Stannaborates: tuning the ion conductivity of dodecaborate salts with tin substitution
Metal substituted dodecaborate anions can be coupled with alkali metal cations to have great potential as solid-state ion conductors for battery applications. A tin atom can replace a B-H unit within an unsubstituted dodecaborate cage to produce a stable, polar divalent anion. The chemical and struc...
| Main Authors: | , , , , , |
|---|---|
| Format: | Journal Article |
| Language: | English |
| Published: |
2023
|
| Online Access: | http://purl.org/au-research/grants/arc/DP230100429 http://hdl.handle.net/20.500.11937/97007 |
| Summary: | Metal substituted dodecaborate anions can be coupled with alkali metal cations to have great potential as solid-state ion conductors for battery applications. A tin atom can replace a B-H unit within an unsubstituted dodecaborate cage to produce a stable, polar divalent anion. The chemical and structural change in forming a stannaborate results in a modified crystal structure of respective group 1 metal salts, and as a result, improves the material's ion conductivity. Li2B11H11Sn shows high ion conductivity of ∼8 mS cm−1 at 130 °C, similar to the state-of-the-art LiCB11H12 at these temperatures, however, obtaining high ion conductivity at room temperature is not possible with pristine alkali metal stannaborates. |
|---|