Electrolyte Engineering for Safer Lithium-Ion Batteries: A Review
Despite being widely used in people's daily life, the safety issue of lithium-ion batteries (LIBs) has become the major barrier for them to be applied in electrical vehicles (EVs) or large-scale energy storage. Typically, due to the use of liquid electrolytes containing flammable solvents which...
| Main Authors: | Cao, Chencheng, Zhong, Yijun, Shao, Zongping |
|---|---|
| Format: | Journal Article |
| Published: |
2023
|
| Online Access: | http://purl.org/au-research/grants/arc/DP200103332 http://hdl.handle.net/20.500.11937/96654 |
Similar Items
Design of Anode-Electrolyte Interface Towards Better Solid-State Lithium Batteries
by: Cao, Chencheng
Published: (2024)
by: Cao, Chencheng
Published: (2024)
A low resistance and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries
by: Cao, Chencheng, et al.
Published: (2022)
by: Cao, Chencheng, et al.
Published: (2022)
Enhancing Fast-Charge Capabilities in Solid-State Lithium Batteries through the Integration of High Li0.5La0.5TiO3 (LLTO) Content in the Lithium-Metal Anode
by: Cao, Chencheng, et al.
Published: (2023)
by: Cao, Chencheng, et al.
Published: (2023)
Enhanced High-Temperature Cycling Stability of Garnet-Based All Solid-State Lithium Battery Using a Multi-Functional Catholyte Buffer Layer
by: Zhao, Leqi, et al.
Published: (2024)
by: Zhao, Leqi, et al.
Published: (2024)
Superiority of gel polymer electrolytes as an application in lithium-ion batteries
by: Nurhasniza, Mamajan Khan, et al.
Published: (2022)
by: Nurhasniza, Mamajan Khan, et al.
Published: (2022)
Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
Investigating solid electrolyte interphases on negative electrodes for beyond lithium-ion batteries
by: Dimogiannis, Konstantinos
Published: (2023)
by: Dimogiannis, Konstantinos
Published: (2023)
Exploring the frontiers of polymer electrolyte: Pioneering advances in lithium-ion batteries recycling
by: Mohd Halizan, Muhammad Zharfan, et al.
Published: (2024)
by: Mohd Halizan, Muhammad Zharfan, et al.
Published: (2024)
Rational design of NiCo2O4/g-C3N4 composite as practical anode of lithium-ion batteries with outstanding electrochemical performance from multiple aspects
by: Liu, Yu, et al.
Published: (2019)
by: Liu, Yu, et al.
Published: (2019)
Fluorinated electrolytes for li-ion batteries: the lithium difluoro(oxalato)borate additive for stabilizing the solid electrolyte interphase
by: Xia, Lan, et al.
Published: (2017)
by: Xia, Lan, et al.
Published: (2017)
Understanding degradation in lithium-ion and lithium-air batteries
by: McNulty, Rory
Published: (2023)
by: McNulty, Rory
Published: (2023)
High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries
by: Lin, Q., et al.
Published: (2016)
by: Lin, Q., et al.
Published: (2016)
Ternary Hybrid Pvdf-Hfp Pani Go Polymer Electrolyte Membrane For Lithium Ion Battery
by: Farooqui, Usaid Ur Rehman
Published: (2019)
by: Farooqui, Usaid Ur Rehman
Published: (2019)
Ternary Hybrid Pvdf-Hfp Pani Go Polymer Electrolyte Membrane For Lithium Ion Battery
by: Farooqui, Usaid Ur Rehman
Published: (2019)
by: Farooqui, Usaid Ur Rehman
Published: (2019)
Self-Recovery Chemistry and Cobalt-Catalyzed Electrochemical Deposition of Cathode for Boosting Performance of Aqueous Zinc-Ion Batteries
by: Zhong, Yijun, et al.
Published: (2020)
by: Zhong, Yijun, et al.
Published: (2020)
Mathematical Modelling of Lithium-ion Concentration in Rechargeable Lithium Batteries
by: Siti Aishah Hashim Ali,
Published: (2011)
by: Siti Aishah Hashim Ali,
Published: (2011)
Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries
by: Wang, J., et al.
Published: (2011)
by: Wang, J., et al.
Published: (2011)
Recent progress in metal–organic frameworks for lithium–sulfur batteries
by: Zhong, Y., et al.
Published: (2018)
by: Zhong, Y., et al.
Published: (2018)
Nanocellulose-based separators in lithium-ion battery
by: Mathew, Manjusha Elizabeth, et al.
Published: (2024)
by: Mathew, Manjusha Elizabeth, et al.
Published: (2024)
From Paper to Paper-like Hierarchical Anatase TiO2 Film Electrode for High-Performance Lithium-Ion Batteries
by: Zhao, B., et al.
Published: (2012)
by: Zhao, B., et al.
Published: (2012)
A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives
by: Zhao, B., et al.
Published: (2015)
by: Zhao, B., et al.
Published: (2015)
Development Of PMMA Based Polymer Electrolyte For Rechargeable Lithium Batteries
by: Tan, Chin Guan
Published: (2008)
by: Tan, Chin Guan
Published: (2008)
Porous TiO2(B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries
by: Wang, J., et al.
Published: (2013)
by: Wang, J., et al.
Published: (2013)
Facile synthesis of a MoO2-Mo2C-C composite and its application as favorable anode material for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
Review: Two-dimensional layered material based electrodes for lithium ion and sodium ion batteries
by: Javed, Omama, et al.
Published: (2022)
by: Javed, Omama, et al.
Published: (2022)
A hierarchical Zn2Mo3O8 nanodots–porous carbon composite as a superior anode for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
Ten major challenges for sustainable lithium-ion batteries
by: Ramasubramanian, Brindha, et al.
Published: (2024)
by: Ramasubramanian, Brindha, et al.
Published: (2024)
Surfactant-free self-assembly of reduced graphite oxide-MoO2 nanobelt composites used as electrode for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
Mesoporous and Nanostructured TiO2 layer with Ultra-High Loading on Nitrogen-Doped Carbon Foams as Flexible and Free-Standing Electrodes for Lithium-Ion Batteries
by: Chu, S., et al.
Published: (2016)
by: Chu, S., et al.
Published: (2016)
Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance
by: Cai, R., et al.
Published: (2010)
by: Cai, R., et al.
Published: (2010)
A polyaniline-coated mechanochemically synthesized tin oxide/graphene nanocomposite for high-power and high-energy lithium-ion batteries
by: Ye, F., et al.
Published: (2015)
by: Ye, F., et al.
Published: (2015)
Phosphate polyanion materials as high-voltage lithium-ion battery cathode: A review
by: JinKiong, Ling, et al.
Published: (2021)
by: JinKiong, Ling, et al.
Published: (2021)
Studies on the properties of pmma-based polymer electrolyte for lithium rechargeable battery
by: Tan, Kia Wui
Published: (2013)
by: Tan, Kia Wui
Published: (2013)
Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries
by: Wang, S., et al.
Published: (2017)
by: Wang, S., et al.
Published: (2017)
Addressing preliminary challenges in upscaling the recovery of lithium from spent lithium ion batteries by the electrochemical method: a review
by: Kasri, Mohamad Arif, et al.
Published: (2024)
by: Kasri, Mohamad Arif, et al.
Published: (2024)
Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries
by: Gao, X., et al.
Published: (2015)
by: Gao, X., et al.
Published: (2015)
Morphology-dependent performance of Zn2GeO4 as a high-performance anode material for rechargeable lithium ion batteries
by: Feng, Y., et al.
Published: (2015)
by: Feng, Y., et al.
Published: (2015)
Dodecylamine-Induced Synthesis of a Nitrogen-Doped Carbon Comb for Advanced Lithium-Sulfur Battery Cathodes
by: Lu, Q., et al.
Published: (2018)
by: Lu, Q., et al.
Published: (2018)
Three Strongly Coupled Allotropes in a Functionalized Porous All-Carbon Nanocomposite as a Superior Anode for Lithium-Ion Batteries
by: Deng, X., et al.
Published: (2016)
by: Deng, X., et al.
Published: (2016)
Selective liberation in dry milled spent lithium-ion batteries
by: Widijatmoko, Samuel D., et al.
Published: (2019)
by: Widijatmoko, Samuel D., et al.
Published: (2019)
Similar Items
-
Design of Anode-Electrolyte Interface Towards Better Solid-State Lithium Batteries
by: Cao, Chencheng
Published: (2024) -
A low resistance and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries
by: Cao, Chencheng, et al.
Published: (2022) -
Enhancing Fast-Charge Capabilities in Solid-State Lithium Batteries through the Integration of High Li0.5La0.5TiO3 (LLTO) Content in the Lithium-Metal Anode
by: Cao, Chencheng, et al.
Published: (2023) -
Enhanced High-Temperature Cycling Stability of Garnet-Based All Solid-State Lithium Battery Using a Multi-Functional Catholyte Buffer Layer
by: Zhao, Leqi, et al.
Published: (2024) -
Superiority of gel polymer electrolytes as an application in lithium-ion batteries
by: Nurhasniza, Mamajan Khan, et al.
Published: (2022)