Positron scattering from complex atoms and molecules of relevance to biological, fusion, and plasma research
The single-centre convergent close-coupling theory and code were extended beyond quasi-one and -two electron systems to atoms with any number of electrons. Calculations were completed for carbon, oxygen, neon, argon, boron, and fluorine. A complex model potential, scaled to the CCC calculations, was...
| Main Author: | |
|---|---|
| Format: | Thesis |
| Published: |
Curtin University
2024
|
| Online Access: | http://hdl.handle.net/20.500.11937/95582 |
| Summary: | The single-centre convergent close-coupling theory and code were extended beyond quasi-one and -two electron systems to atoms with any number of electrons. Calculations were completed for carbon, oxygen, neon, argon, boron, and fluorine. A complex model potential, scaled to the CCC calculations, was utilised to address issues associated with single-centre expansions and to calculate ionisation cross sections. A modified independent atom model was used to calculate cross sections for molecular systems from the atomic results. |
|---|