Enhancement Mechanism of the Difference of Hydrophobicity between Anode and Cathode Active Materials from Spent Lithium-Ion Battery Using Plasma Modification
In the context of resource utilization of spent lithium-ion batteries (LIBs), low-temperature plasma modification has the advantages of high efficiency and nonpollution over traditional recycling pathways. In this work, the technique of degrading the binder in electrode materials with low-temperatur...
| Main Authors: | Dong, Lisha, Tong, Zheng, Wang, Xuexia, Bu, Xiangning |
|---|---|
| Format: | Journal Article |
| Published: |
American Chemical Society
2024
|
| Online Access: | http://hdl.handle.net/20.500.11937/95213 |
Similar Items
Influences of plasma treatment parameters on the hydrophobicity of cathode and anode materials from spent lithium-ion batteries.
by: Ren, Xibing, et al.
Published: (2024)
by: Ren, Xibing, et al.
Published: (2024)
Selective liberation in dry milled spent lithium-ion batteries
by: Widijatmoko, Samuel D., et al.
Published: (2019)
by: Widijatmoko, Samuel D., et al.
Published: (2019)
Recovering lithium cobalt oxide, aluminium, and copper from spent lithium-ion battery via attrition scrubbing
by: Widijatmoko, Samuel D., et al.
Published: (2020)
by: Widijatmoko, Samuel D., et al.
Published: (2020)
Spinel LiMn2O4 cathode and carbonaceous anode material for electrochemical energy storage lithium-ion battery
by: Zahoor, Ahmed
Published: (2021)
by: Zahoor, Ahmed
Published: (2021)
Characterization Of Lithium Vanadium Oxide Anode With Agar Binder In Aqueous Rechargeable Lithium Ion Batteries
by: Soo, Kuan Lim
Published: (2017)
by: Soo, Kuan Lim
Published: (2017)
Recovery of positive electrode active material from spent lithium-ion battery
by: Widijatmoko, Samuel D
Published: (2020)
by: Widijatmoko, Samuel D
Published: (2020)
Cobalt Oxide Supercapacitor Electrode Recovered from Spent Lithium-Ion Battery
by: Aboelazm, Eslam A. A., et al.
Published: (2018)
by: Aboelazm, Eslam A. A., et al.
Published: (2018)
Electrospun ternary composite metal oxide fibers as an anode for lithium-ion batteries
by: Ling, Jin Kiong, et al.
Published: (2022)
by: Ling, Jin Kiong, et al.
Published: (2022)
Electrochemical Characterization Of Lithium Vanadium Oxide Anode With Agar Binder In Aqueous Rechargeable Lithium Ion Batteries
by: Lease, Jacqueline
Published: (2018)
by: Lease, Jacqueline
Published: (2018)
Synthesis And Electrochemical Properties Of Licoo2 Cathode With Graphite Or Graphene Anode For Aqueous Rechargeable Lithium Batteries
by: Aziz, Nur Azilina Abdul
Published: (2018)
by: Aziz, Nur Azilina Abdul
Published: (2018)
Anisotropic mechanical properties of Si anodes in a lithiation process of lithium-ion batteries
by: Wang, D., et al.
Published: (2018)
by: Wang, D., et al.
Published: (2018)
Phosphate polyanion materials as high-voltage lithium-ion battery cathode: A review
by: JinKiong, Ling, et al.
Published: (2021)
by: JinKiong, Ling, et al.
Published: (2021)
Addressing preliminary challenges in upscaling the recovery of lithium from spent lithium ion batteries by the electrochemical method: a review
by: Kasri, Mohamad Arif, et al.
Published: (2024)
by: Kasri, Mohamad Arif, et al.
Published: (2024)
A kinetic model for diffusion and chemical reaction of silicon anode lithiation in lithium ion batteries
by: Xie, Z., et al.
Published: (2016)
by: Xie, Z., et al.
Published: (2016)
Optimizing graphene anode performance in lithium-ion batteries: investigating the effects of diverse thermal conditions
by: Ng, Zen Ian, et al.
Published: (2024)
by: Ng, Zen Ian, et al.
Published: (2024)
Investigations on the Influence of Sm3+Ion on the Nano TiO2 Matrix as the Anode Material for Lithium Ion Batteries
by: Abhilash, K. P., et al.
Published: (2017)
by: Abhilash, K. P., et al.
Published: (2017)
Understanding degradation in lithium-ion and lithium-air batteries
by: McNulty, Rory
Published: (2023)
by: McNulty, Rory
Published: (2023)
Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance
by: Liu, H., et al.
Published: (2011)
by: Liu, H., et al.
Published: (2011)
Advanced amorphous nanoporous stannous oxide composite with carbon nanotubes as anode materials for lithium-ion batteries
by: Jiang, W., et al.
Published: (2014)
by: Jiang, W., et al.
Published: (2014)
High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries
by: Lin, Q., et al.
Published: (2016)
by: Lin, Q., et al.
Published: (2016)
A twins-structural Sn@C core–shell composite as anode materials for lithium-ion batteries
by: Wang, Y., et al.
Published: (2016)
by: Wang, Y., et al.
Published: (2016)
Sulfur-nickel foam as cathode materials for lithium-sulfur batteries
by: Cheng, J., et al.
Published: (2015)
by: Cheng, J., et al.
Published: (2015)
Mathematical Modelling of Lithium-ion Concentration in Rechargeable Lithium Batteries
by: Siti Aishah Hashim Ali,
Published: (2011)
by: Siti Aishah Hashim Ali,
Published: (2011)
Fe@Ag nanoparticles decorated reduced graphene oxide as ultrahigh capacity anode material for lithium-ion battery
by: Atar, N., et al.
Published: (2015)
by: Atar, N., et al.
Published: (2015)
SnO2/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries with enhanced cyclability.
by: Jiang, W., et al.
Published: (2016)
by: Jiang, W., et al.
Published: (2016)
Quasi-anisotropic benefits in electrospun nickel–cobalt–manganese oxide nano-octahedron as anode for lithium-ion batteries
by: Ling, Jin Kiong, et al.
Published: (2022)
by: Ling, Jin Kiong, et al.
Published: (2022)
Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
Simulation of lithium-ion concentration profiles in separator and cathode of lithium-ion battery using theta formulation under finite difference method / Md Jauharul Haqaiq Harun
by: Md Jauharul Haqaiq, Harun
Published: (2012)
by: Md Jauharul Haqaiq, Harun
Published: (2012)
Soft-combustion synthesis of a new cathode-active material, LiVWO6, for lithium-ion batteries
by: Prabaharan, S.R.S., et al.
Published: (2001)
by: Prabaharan, S.R.S., et al.
Published: (2001)
Nanocellulose-based separators in lithium-ion battery
by: Mathew, Manjusha Elizabeth, et al.
Published: (2024)
by: Mathew, Manjusha Elizabeth, et al.
Published: (2024)
Recent progress on sodium ion batteries: Potential high-performance anodes
by: Li, L., et al.
Published: (2018)
by: Li, L., et al.
Published: (2018)
Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries
by: Wang, S., et al.
Published: (2017)
by: Wang, S., et al.
Published: (2017)
Crumpled nitrogen- and boron-dual-self-doped graphene sheets as an extraordinary active anode material for lithium ion batteries
by: Huang, S., et al.
Published: (2016)
by: Huang, S., et al.
Published: (2016)
Porous Co3V2O8Nanosheets with Ultrahigh Performance as Anode Materials for Lithium Ion Batteries
by: Zhang, Q., et al.
Published: (2017)
by: Zhang, Q., et al.
Published: (2017)
Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance
by: Cai, R., et al.
Published: (2010)
by: Cai, R., et al.
Published: (2010)
Impact of CO2 activation on the structure, composition, and performance of Sb/C nanohybrid lithium/sodium-ion battery anodes
by: Liang, Suzhe, et al.
Published: (2021)
by: Liang, Suzhe, et al.
Published: (2021)
Preparation and characterization of lithiated cathode materials for lithium batteries / Shanti Navaratnam
by: Navaratnam, Shanti
Published: (2001)
by: Navaratnam, Shanti
Published: (2001)
Synthesis and structural characterization of modified LiMnPO4 cathode materials for lithium ion batteries / Rajammal Karuppiah
by: Rajammal, Karuppiah
Published: (2016)
by: Rajammal, Karuppiah
Published: (2016)
Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries
by: Gao, X., et al.
Published: (2015)
by: Gao, X., et al.
Published: (2015)
Magnetic Electrodeposition of the Hierarchical Cobalt Oxide Nanostructure from Spent Lithium-Ion Batteries: Its Application as a Supercapacitor Electrode
by: Aboelazm, Eslam A. A., et al.
Published: (2018)
by: Aboelazm, Eslam A. A., et al.
Published: (2018)
Similar Items
-
Influences of plasma treatment parameters on the hydrophobicity of cathode and anode materials from spent lithium-ion batteries.
by: Ren, Xibing, et al.
Published: (2024) -
Selective liberation in dry milled spent lithium-ion batteries
by: Widijatmoko, Samuel D., et al.
Published: (2019) -
Recovering lithium cobalt oxide, aluminium, and copper from spent lithium-ion battery via attrition scrubbing
by: Widijatmoko, Samuel D., et al.
Published: (2020) -
Spinel LiMn2O4 cathode and carbonaceous anode material for electrochemical energy storage lithium-ion battery
by: Zahoor, Ahmed
Published: (2021) -
Characterization Of Lithium Vanadium Oxide Anode With Agar Binder In Aqueous Rechargeable Lithium Ion Batteries
by: Soo, Kuan Lim
Published: (2017)