Palaeomagnetic field intensity measurements from the 2.6 Ga Yandinilling dyke swarm (Western Australia)

Precambrian palaeointensity measurements provide fundamental constraints on the evolution of the deep Earth. Core evolution models predict trends in dipole moment on billion-year timescales that can be tested by palaeomagnetic records. Here, we report new palaeointensity results from the recently id...

Full description

Bibliographic Details
Main Authors: Hawkins, L.M., Biggin, A.J., Liu, Y., Grappone, J.M., Li, Zheng-Xiang
Format: Journal Article
Published: 2024
Online Access:http://purl.org/au-research/grants/arc/DP210102495
http://hdl.handle.net/20.500.11937/94781
_version_ 1848765921938636800
author Hawkins, L.M.
Biggin, A.J.
Liu, Y.
Grappone, J.M.
Li, Zheng-Xiang
author_facet Hawkins, L.M.
Biggin, A.J.
Liu, Y.
Grappone, J.M.
Li, Zheng-Xiang
author_sort Hawkins, L.M.
building Curtin Institutional Repository
collection Online Access
description Precambrian palaeointensity measurements provide fundamental constraints on the evolution of the deep Earth. Core evolution models predict trends in dipole moment on billion-year timescales that can be tested by palaeomagnetic records. Here, we report new palaeointensity results from the recently identified ∼2.62 Ga Yandinilling dyke swarm of the Yilgarn Craton, Western Australia, and consider them alongside published measurements spanning 500 Myr across the late Archaean to earliest Proterozoic. Rock magnetic and scanning electron microscopy analysis confirm that the magnetic mineralogy is fine-grained magnetite, appearing mostly as exsolved lamellae with ilmenite. Six sites produced acceptable palaeointensity estimates from thermal and microwave IZZI protocol Thellier experiments and from double-heating technique Shaw experiments. These site mean values of 9-26 μT translate to virtual dipole moments of 11-44 ZAm2 that are considerably lower than today's dipole moment of ∼80 ZAm2 and the value predicted for this time period by some thermal evolution models. Their average (median = 41 ZAm2) is, however, similar to the long-term average during both of the intervals 2300-2800 Ma (median = 44 ZAm2; N = 103) and 10-500 Ma (median 41 ZAm2; N = 997). While there is little evidence for a substantial net change in average dipole moment between the late Archaean and Phanerozoic, there is preliminary evidence that its variance has increased between the two intervals. This lower variance more than two billion years ago supports the idea that the geodynamo, even while not producing a stronger magnetic field, was more stable on average at the Archaean-Proterozoic transition than it is today.
first_indexed 2025-11-14T11:42:56Z
format Journal Article
id curtin-20.500.11937-94781
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T11:42:56Z
publishDate 2024
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-947812024-05-07T08:57:39Z Palaeomagnetic field intensity measurements from the 2.6 Ga Yandinilling dyke swarm (Western Australia) Hawkins, L.M. Biggin, A.J. Liu, Y. Grappone, J.M. Li, Zheng-Xiang Precambrian palaeointensity measurements provide fundamental constraints on the evolution of the deep Earth. Core evolution models predict trends in dipole moment on billion-year timescales that can be tested by palaeomagnetic records. Here, we report new palaeointensity results from the recently identified ∼2.62 Ga Yandinilling dyke swarm of the Yilgarn Craton, Western Australia, and consider them alongside published measurements spanning 500 Myr across the late Archaean to earliest Proterozoic. Rock magnetic and scanning electron microscopy analysis confirm that the magnetic mineralogy is fine-grained magnetite, appearing mostly as exsolved lamellae with ilmenite. Six sites produced acceptable palaeointensity estimates from thermal and microwave IZZI protocol Thellier experiments and from double-heating technique Shaw experiments. These site mean values of 9-26 μT translate to virtual dipole moments of 11-44 ZAm2 that are considerably lower than today's dipole moment of ∼80 ZAm2 and the value predicted for this time period by some thermal evolution models. Their average (median = 41 ZAm2) is, however, similar to the long-term average during both of the intervals 2300-2800 Ma (median = 44 ZAm2; N = 103) and 10-500 Ma (median 41 ZAm2; N = 997). While there is little evidence for a substantial net change in average dipole moment between the late Archaean and Phanerozoic, there is preliminary evidence that its variance has increased between the two intervals. This lower variance more than two billion years ago supports the idea that the geodynamo, even while not producing a stronger magnetic field, was more stable on average at the Archaean-Proterozoic transition than it is today. 2024 Journal Article http://hdl.handle.net/20.500.11937/94781 10.1093/gji/ggad423 http://purl.org/au-research/grants/arc/DP210102495 http://purl.org/au-research/grants/arc/FL150100133 http://creativecommons.org/licenses/by/4.0/ fulltext
spellingShingle Hawkins, L.M.
Biggin, A.J.
Liu, Y.
Grappone, J.M.
Li, Zheng-Xiang
Palaeomagnetic field intensity measurements from the 2.6 Ga Yandinilling dyke swarm (Western Australia)
title Palaeomagnetic field intensity measurements from the 2.6 Ga Yandinilling dyke swarm (Western Australia)
title_full Palaeomagnetic field intensity measurements from the 2.6 Ga Yandinilling dyke swarm (Western Australia)
title_fullStr Palaeomagnetic field intensity measurements from the 2.6 Ga Yandinilling dyke swarm (Western Australia)
title_full_unstemmed Palaeomagnetic field intensity measurements from the 2.6 Ga Yandinilling dyke swarm (Western Australia)
title_short Palaeomagnetic field intensity measurements from the 2.6 Ga Yandinilling dyke swarm (Western Australia)
title_sort palaeomagnetic field intensity measurements from the 2.6 ga yandinilling dyke swarm (western australia)
url http://purl.org/au-research/grants/arc/DP210102495
http://purl.org/au-research/grants/arc/DP210102495
http://hdl.handle.net/20.500.11937/94781