Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries
In this study, nanocrystalline LiMn2O4 was synthesized by a simple combustion method and investigated for its utility as the positive electrode of a lithium-ion battery. X-Ray Diffraction characterization demonstrated that a basic crystallized spinel phase was already formed in the primary product f...
| Main Authors: | Gao, X., Sha, Y., Lin, Q., Cai, R., Tade, Moses, Shao, Zongping |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier
2015
|
| Online Access: | http://hdl.handle.net/20.500.11937/9369 |
Similar Items
Spinel LiMn2O4 cathode and carbonaceous anode material for electrochemical energy storage lithium-ion battery
by: Zahoor, Ahmed
Published: (2021)
by: Zahoor, Ahmed
Published: (2021)
The solid-state chelation synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium-ion batteries
by: Jiang, X., et al.
Published: (2015)
by: Jiang, X., et al.
Published: (2015)
Cation/Anion substitution into spinel LiMn2O4 cathode material for Li-ion battery application: a review of recent progress
by: Zahoor, Ahmed, et al.
Published: (2021)
by: Zahoor, Ahmed, et al.
Published: (2021)
Free-standing nitrogen doped V-O-C nanofiber film as promising electrode for flexible lithium-ionbatteries
by: Chen, X., et al.
Published: (2014)
by: Chen, X., et al.
Published: (2014)
Soft-combustion synthesis of a new cathode-active material, LiVWO6, for lithium-ion batteries
by: Prabaharan, S.R.S., et al.
Published: (2001)
by: Prabaharan, S.R.S., et al.
Published: (2001)
Synthesis and structural characterization of modified LiMnPO4 cathode materials for lithium ion batteries / Rajammal Karuppiah
by: Rajammal, Karuppiah
Published: (2016)
by: Rajammal, Karuppiah
Published: (2016)
Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries
by: Wang, J., et al.
Published: (2011)
by: Wang, J., et al.
Published: (2011)
Trapping sulfur in hierarchically porous, hollow indented carbon spheres: A high-performance cathode for lithium-sulfur batteries
by: Zhong, Y., et al.
Published: (2016)
by: Zhong, Y., et al.
Published: (2016)
One-pot combustion synthesis of Li3VO4-Li4Ti5O12 nanocomposite as anode material of lithium-ion batteries with improved performance
by: Sha, Y., et al.
Published: (2016)
by: Sha, Y., et al.
Published: (2016)
Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery
by: Yuan, T., et al.
Published: (2009)
by: Yuan, T., et al.
Published: (2009)
Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries
by: Sha, Y., et al.
Published: (2016)
by: Sha, Y., et al.
Published: (2016)
Investigation of cell parameters, microstructures and electrochemical behaviour of LiMn2O4 normal and nano powders
by: Kamarulzaman , N., et al.
Published: (2009)
by: Kamarulzaman , N., et al.
Published: (2009)
Investigation of cell parameters, microstructures and electrochemical behaviour of LiMn2O4 normal and nano powders
by: Kamarulzaman , N., et al.
Published: (2009)
by: Kamarulzaman , N., et al.
Published: (2009)
Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
Modified template synthesis and electrochemical performance of a Co3O4/mesoporous cathode for lithium–oxygen batteries
by: Wang, S., et al.
Published: (2015)
by: Wang, S., et al.
Published: (2015)
A new cathode material LiCu2O2 for secondary lithium batteries
by: Jacob, M. Milburn Ebenezer, et al.
Published: (2000)
by: Jacob, M. Milburn Ebenezer, et al.
Published: (2000)
Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance
by: Cai, R., et al.
Published: (2010)
by: Cai, R., et al.
Published: (2010)
Template GNL-assisted synthesis of porous Li1.2Mn0.534Ni0.133Co0.133O2: towards high performance cathodes for lithium ion batteries
by: Huang, Y., et al.
Published: (2015)
by: Huang, Y., et al.
Published: (2015)
Synthesis and characterization of Limn(2-x)Fex04 cathodic nano material for advanced lithiumion batteries / Aida Fazliza Mat Fadzi
by: Mat Fadzi, Aida Fazliza
Published: (2007)
by: Mat Fadzi, Aida Fazliza
Published: (2007)
Dodecylamine-Induced Synthesis of a Nitrogen-Doped Carbon Comb for Advanced Lithium-Sulfur Battery Cathodes
by: Lu, Q., et al.
Published: (2018)
by: Lu, Q., et al.
Published: (2018)
Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery
by: Cai, R., et al.
Published: (2011)
by: Cai, R., et al.
Published: (2011)
Sulfur-nickel foam as cathode materials for lithium-sulfur batteries
by: Cheng, J., et al.
Published: (2015)
by: Cheng, J., et al.
Published: (2015)
Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance
by: Wang, G., et al.
Published: (2010)
by: Wang, G., et al.
Published: (2010)
Preparation and characterization of lithiated cathode materials for lithium batteries / Shanti Navaratnam
by: Navaratnam, Shanti
Published: (2001)
by: Navaratnam, Shanti
Published: (2001)
Ballmilling-assisted synthesis and electrochemical performance of LiFePO4/C for lithium-ion battery adopting citric acid as carbon precursor
by: Zhang, D., et al.
Published: (2009)
by: Zhang, D., et al.
Published: (2009)
Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries
by: Zhao, B., et al.
Published: (2012)
by: Zhao, B., et al.
Published: (2012)
Nanostructured lithium-free oxyanion cathode, Li x Co 2(MoO4)3 [0∈x∈<3] for 3 v class lithium batteries
by: Kasim Rawthar, Mumtaj Begam, et al.
Published: (2008)
by: Kasim Rawthar, Mumtaj Begam, et al.
Published: (2008)
Porous nanocrystalline TiO2 with high lithium-ion insertion performance
by: Wang, J., et al.
Published: (2013)
by: Wang, J., et al.
Published: (2013)
Soft-combustion (wet-chemical) synthesis of a new 4-V class cathode-active material, LiVMoO6, for Li-ion batteries
by: Michael, M. S., et al.
Published: (2000)
by: Michael, M. S., et al.
Published: (2000)
MoO3 nanoparticle coatings on high-voltage 5 V LiNi0.5 Mn1.5 O4 cathode materials for improving lithium-ion battery performance
by: Wu, Zong-Han, et al.
Published: (2022)
by: Wu, Zong-Han, et al.
Published: (2022)
Characterization of soft-combustion-derived NASICON-type Li2Co2(MoO4)3 for lithium batteries
by: PRABAHARAN, S
Published: (2004)
by: PRABAHARAN, S
Published: (2004)
A ternary sulphonium composite Cu3BiS3/S as cathode materials for lithium–sulfur batteries
by: Gao, X., et al.
Published: (2016)
by: Gao, X., et al.
Published: (2016)
Electrolyte Engineering for Safer Lithium-Ion Batteries: A Review
by: Cao, Chencheng, et al.
Published: (2023)
by: Cao, Chencheng, et al.
Published: (2023)
Enhancing the cycle life of Li-S batteries by designing a free-standing cathode with excellent flexible, conductive, and catalytic properties
by: Lu, Q., et al.
Published: (2019)
by: Lu, Q., et al.
Published: (2019)
LiNi0.29Co0.33Mn0.38O2 polyhedrons with reduced cation mixing as a high-performance cathode material for Li-ion batteries synthesized via a combined co-precipitation and molten salt heating technique
by: Jiang, X., et al.
Published: (2017)
by: Jiang, X., et al.
Published: (2017)
A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives
by: Zhao, B., et al.
Published: (2015)
by: Zhao, B., et al.
Published: (2015)
Enhanced Electrochemical Performance of LiMn0.75Fe0.25PO4Nanoplates from Multiple Interface Modification by Using Fluorine-Doped Carbon Coating
by: Yan, X., et al.
Published: (2017)
by: Yan, X., et al.
Published: (2017)
Self-assembled mesoporous TiO2/carbon nanotube composite with a three-dimensional conducting nanonetwork as a high-rate anode material for lithium-ion battery
by: Wang, J., et al.
Published: (2014)
by: Wang, J., et al.
Published: (2014)
Two-Step Fabrication of Li4Ti5O12-Coated Carbon Nanofibers as a Flexible Film Electrode for High-Power Lithium-Ion Batteries
by: Zhang, Z., et al.
Published: (2017)
by: Zhang, Z., et al.
Published: (2017)
Similar Items
-
Spinel LiMn2O4 cathode and carbonaceous anode material for electrochemical energy storage lithium-ion battery
by: Zahoor, Ahmed
Published: (2021) -
The solid-state chelation synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium-ion batteries
by: Jiang, X., et al.
Published: (2015) -
Cation/Anion substitution into spinel LiMn2O4 cathode material for Li-ion battery application: a review of recent progress
by: Zahoor, Ahmed, et al.
Published: (2021) -
Free-standing nitrogen doped V-O-C nanofiber film as promising electrode for flexible lithium-ionbatteries
by: Chen, X., et al.
Published: (2014) -
Soft-combustion synthesis of a new cathode-active material, LiVWO6, for lithium-ion batteries
by: Prabaharan, S.R.S., et al.
Published: (2001)