On the Structure of Convex Piecewise Quadratic Functions

Convex piecewise quadratic functions (CPQF) play an important role in mathematical programming, and yet their structure has not been fully studied. In this paper, these functions are categorized into difference-definite and difference-indefinite types. We show that, for either type, the expressions...

Full description

Bibliographic Details
Main Author: Sun, Jie
Format: Journal Article
Language:English
Published: Springer New York LLC 1992
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/91446
Description
Summary:Convex piecewise quadratic functions (CPQF) play an important role in mathematical programming, and yet their structure has not been fully studied. In this paper, these functions are categorized into difference-definite and difference-indefinite types. We show that, for either type, the expressions of a CPQF on neighboring polyhedra in its domain can differ only by a quadratic function related to the common boundary of the polyhedra. Specifically, we prove that the monitoring function in extended linear-quadratic programming is difference-definite. We then study the case where the domain of the difference-definite CPQF is a union of boxes, which arises in many applications. We prove that any such function must be a sum of a convex quadratic function and a separable CPQF. Hence, their minimization problems can be reformulated as monotropic piecewise quadratic programs. © 1992 Plenum Publishing Corporation.