Reservoir computing with swarms
We study swarms as dynamical systems for reservoir computing (RC). By example of a modified Reynolds boids model, the specific symmetries and dynamical properties of a swarm are explored with respect to a nonlinear time-series prediction task. Specifically, we seek to extract meaningful information...
| Main Authors: | , , , |
|---|---|
| Format: | Journal Article |
| Language: | English |
| Published: |
AIP Publishing
2021
|
| Subjects: | |
| Online Access: | http://purl.org/au-research/grants/arc/IC180100030 http://hdl.handle.net/20.500.11937/91022 |
| Summary: | We study swarms as dynamical systems for reservoir computing (RC). By example of a modified Reynolds boids model, the specific symmetries and dynamical properties of a swarm are explored with respect to a nonlinear time-series prediction task. Specifically, we seek to extract meaningful information about a predator-like driving signal from the swarm's response to that signal. We find thatthe naïve implementation of a swarm for computation is very inefficient, as permutation symmetry of the individual agents reduces the computational capacity. To circumvent this, we distinguish between the computational substrate of the swarm and a separate observation layer, in which the swarm's response is measured for use in the task. We demonstrate the implementation of a radial basis-localized observation layer for this task. The behavior of the swarm is characterized by order parameters and measures of consistency and related to the performance of the swarm as a reservoir. The relationship between RC performance and swarm behavior demonstrates that optimal computational properties are obtained near a phase transition regime. |
|---|