Relation between cathodoluminescence and trace-element distribution of magmatic topaz from the Ary-Bulak massif, Russia

In order to define the cathodoluminescence (CL) properties of magmatic topaz and its relation with traceelement composition, we studied topaz phenocrysts from the Ary-Bulak ongonite massif, Russia using a wide array of analytical techniques. Scanning electron microscopy CL panchromatic images reveal...

Full description

Bibliographic Details
Main Authors: Agangi, Andrea, Gucsik, A., Nishido, H., Ninagawa, K., Kamenetsky, V.
Format: Journal Article
Published: Mineralogical Society 2016
Online Access:http://hdl.handle.net/20.500.11937/9054
Description
Summary:In order to define the cathodoluminescence (CL) properties of magmatic topaz and its relation with traceelement composition, we studied topaz phenocrysts from the Ary-Bulak ongonite massif, Russia using a wide array of analytical techniques. Scanning electron microscopy CL panchromatic images reveal strong variations, which define micrometre-scale euhedral growth textures. Several truncations of these growth textures occur in single grains implying multiple growth and resorption events. The CL spectra of both CLbright and -dark domains have a major peak in the near-ultraviolet centred at 393 nm. Cathodoluminescence images taken after several minutes of electron bombardment show decreasing emission intensity. Electron microprobe analyses indicate high F concentrations (average OH/(OH + F) = 0.04 calculated by difference, 100 wt.% – total from electron probe microanalyses), consistent with what has been found previously in topaz-bearing granites, and the OH stretching vibration (~3653 cm-1) was detected in Raman spectra. Laser ablation inductively-coupled plasma mass spectrometry traverses performed across the CL textures detected trace elements at ppm to thousands of ppm levels, including: Fe, Mn, Li, Be, B, P, Nb, Ta, W, Ti, Ga, light rare-earth elements, Th and U. Lithium,W, Nb and Ta appear to be correlated with CL intensity, suggesting a role for some of these elements in the activation of CL in topaz. In contrast, no clear correlation was found between CL intensity and F contents, despite the fact that the replacement of OH for F is known to affect the cell parameters of topaz.