The main asteroid belt: The primary source of debris on comet-like orbits
Jupiter-family comets (JFCs) contribute a significant amount of debris to near-Earth space. However, telescopic observations of these objects seem to suggest that they have short physical lifetimes. If this is true, the material generated will also be short-lived, but fireball observation networks s...
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
2021
|
| Subjects: | |
| Online Access: | http://dx.doi.org/10.3847/PSJ/abde4b http://hdl.handle.net/20.500.11937/90261 |
| Summary: | Jupiter-family comets (JFCs) contribute a significant amount of debris to near-Earth space. However, telescopic observations of these objects seem to suggest that they have short physical lifetimes. If this is true, the material generated will also be short-lived, but fireball observation networks still detect material on cometary orbits. This study examines centimeter-to-meter-scale sporadic meteoroids detected by the Desert Fireball Network from 2014 to 2020 originating from JFC-like orbits. Analyzing each event's dynamic history and physical characteristics, we confidently determined whether they originated from the main asteroid belt or the trans-Neptunian region. Our results indicate that <4% of sporadic meteoroids on JFC-like orbits are genetically cometary. This observation is statistically significant and shows that cometary material is too friable to survive in near-Earth space. Even when considering shower contributions, meteoroids on JFC-like orbits are primarily from the main belt. Thus, the presence of genuine cometary meteorites in terrestrial collections is highly unlikely. |
|---|