Discussion on the suitability of dynamic constitutive models for prediction of geopolymer concrete structural responses under blast and impact loading
Compared to ordinary Portland cement-based concrete (OPC), geopolymer concrete (GPC) is an environmental-friendly construction material because it is mixed by replacing Portland cement with industry wastes such as fly ash. Despite intensive researches in the last two decades, application of geopolym...
| Main Authors: | Chen, Chong, Zhang, Xihong, Hao, Hong, Cui, Jian |
|---|---|
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier
2022
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/89089 |
Similar Items
Utilization of fly ash in construction industry
by: Barbhuiya, Salim
Published: (2014)
by: Barbhuiya, Salim
Published: (2014)
Geopolymer concrete for environmental protection
by: Rangan, B. Vijaya
Published: (2014)
by: Rangan, B. Vijaya
Published: (2014)
Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition
by: Nath, Pradip, et al.
Published: (2014)
by: Nath, Pradip, et al.
Published: (2014)
Reinforced Geopolymer Concrete after Exposure to Fire
by: Sarker, Prabir, et al.
Published: (2011)
by: Sarker, Prabir, et al.
Published: (2011)
Fly Ash Based Geopolymer Concrete with Recycled Concrete Aggregate
by: Galvin, Benjamin, et al.
Published: (2011)
by: Galvin, Benjamin, et al.
Published: (2011)
The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature
by: Deb, Partha, et al.
Published: (2014)
by: Deb, Partha, et al.
Published: (2014)
Mechanical properties of fibre reinforced high volume fly ash concretes
by: Shafaei, Y., et al.
Published: (2015)
by: Shafaei, Y., et al.
Published: (2015)
Investigation on potential of local aggregates in producing high strength concrete with fly ash / Narita Noh
by: Noh, Narita
Published: (2014)
by: Noh, Narita
Published: (2014)
Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature
by: Nath, Pradip, et al.
Published: (2015)
by: Nath, Pradip, et al.
Published: (2015)
Geopolymer Concrete with Recycled Concrete Aggregate
by: Galvin, Benjamin, et al.
Published: (2012)
by: Galvin, Benjamin, et al.
Published: (2012)
Fracture properties of geopolymer concrete cured in ambient temperature
by: Nath, Pradip, et al.
Published: (2013)
by: Nath, Pradip, et al.
Published: (2013)
Strength and Water Penetrability of Fly Ash Geopolymer Conrete
by: Olivia, Monita, et al.
Published: (2011)
by: Olivia, Monita, et al.
Published: (2011)
Fire endurance of steel reinforced fly ash geopolymer concrete elements
by: Sarker, Prabir, et al.
Published: (2015)
by: Sarker, Prabir, et al.
Published: (2015)
Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete
by: Sarker, Prabir, et al.
Published: (2014)
by: Sarker, Prabir, et al.
Published: (2014)
Fly ash-based geopolymer concrete
by: Rangan, B. Vijaya
Published: (2008)
by: Rangan, B. Vijaya
Published: (2008)
Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete
by: Hardjito, Djwantoro, et al.
Published: (2005)
by: Hardjito, Djwantoro, et al.
Published: (2005)
Low-Calcium fly ash-based geopolymer concrete: Reinforced beams and columns
by: Sumajouw, Marthin, et al.
Published: (2006)
by: Sumajouw, Marthin, et al.
Published: (2006)
Low-Calcium fly ash-based geopolymer concrete: Long-term properties
by: Wallah, Steenie, et al.
Published: (2006)
by: Wallah, Steenie, et al.
Published: (2006)
Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests
by: Hao, Yifei, et al.
Published: (2013)
by: Hao, Yifei, et al.
Published: (2013)
Fracture behaviour of heat cured fly ash based geopolymer concrete
by: Sarker, Prabir, et al.
Published: (2013)
by: Sarker, Prabir, et al.
Published: (2013)
Properties of empty fruit bunches ash (EFBash) concrete / Mohd Amizan Mohamed @ Arifin and Assoc. Prof. Ir. Dr. Kartini Kamaruddin
by: Mohamed @ Arifin, Mohd Amizan, et al.
Published: (2012)
by: Mohamed @ Arifin, Mohd Amizan, et al.
Published: (2012)
Bond strength of reinforcing steel embedded in fly ash-based geopolymer concrete
by: Sarker, Prabir
Published: (2011)
by: Sarker, Prabir
Published: (2011)
A Critical Review on the Utilization of Fly Ash in Concrete Production
by: Barbhuiya, Salim
Published: (2012)
by: Barbhuiya, Salim
Published: (2012)
Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles
by: Shaikh, Faiz, et al.
Published: (2014)
by: Shaikh, Faiz, et al.
Published: (2014)
Strength and Hydration Heat of Concrete using Fly Ash as a Partial Replacement of Cement
by: Sarker, Prabir, et al.
Published: (2009)
by: Sarker, Prabir, et al.
Published: (2009)
Preparation and characterisation of fly ash based geopolymer mortars
by: Temuujin, Jadambaa, et al.
Published: (2010)
by: Temuujin, Jadambaa, et al.
Published: (2010)
Experimental Study on Concrete with Low Calcium Fly Ash as Mineral Admixture
by: Jayakumar, Muthuramalingam, et al.
Published: (2010)
by: Jayakumar, Muthuramalingam, et al.
Published: (2010)
Geopolymer Concrete Applications
by: Rangan, Vijaya
Published: (2014)
by: Rangan, Vijaya
Published: (2014)
Fracture energy of geopolymer concrete
by: Sarker, Prabir, et al.
Published: (2012)
by: Sarker, Prabir, et al.
Published: (2012)
Geopolymer concrete for curing at normal temperature
by: Sarker, Prabir, et al.
Published: (2014)
by: Sarker, Prabir, et al.
Published: (2014)
Experimental and analytical investigation on flexural behaviour of ambient cured geopolymer concrete beams reinforced with steel fibers
by: Tran, Tung, et al.
Published: (2019)
by: Tran, Tung, et al.
Published: (2019)
Geopolymer Concrete Using Fly Ash
by: Sarker, Prabir, et al.
Published: (2014)
by: Sarker, Prabir, et al.
Published: (2014)
Durability of Fly Ash Geopolymer Concrete in a Seawater Environment
by: Olivia, Monita, et al.
Published: (2011)
by: Olivia, Monita, et al.
Published: (2011)
Mechanical characteristics of cotton fibre reinforced geopolymer composites
by: Alomayri, T., et al.
Published: (2014)
by: Alomayri, T., et al.
Published: (2014)
Shear performance of reinforced concrete (RC) beams strengthened with mortar-based composites under monotonic and fatigue loading
by: Liu, Xiangsheng
Published: (2025)
by: Liu, Xiangsheng
Published: (2025)
Flexural behaviour of reinforced concrete beams strengthened with textile fine grained mortar / Zalipah Jamellodin
by: Jamellodin, Zalipah
Published: (2020)
by: Jamellodin, Zalipah
Published: (2020)
Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures
by: Shaikh, Faiz, et al.
Published: (2014)
by: Shaikh, Faiz, et al.
Published: (2014)
Fly ash based geopolymer concrete: structural properties
by: Sarker, Prabir
Published: (2011)
by: Sarker, Prabir
Published: (2011)
Geopolymer Concrete Columns under Combined Axial Load and Biaxial Bending
by: Rahman, Muhammad, et al.
Published: (2011)
by: Rahman, Muhammad, et al.
Published: (2011)
Development of Regression Models for Predicting Properties of High Strength Concrete Using Nondestructive Tests
by: Mohiuddin Khan, Shibli Russel
Published: (2007)
by: Mohiuddin Khan, Shibli Russel
Published: (2007)
Similar Items
-
Utilization of fly ash in construction industry
by: Barbhuiya, Salim
Published: (2014) -
Geopolymer concrete for environmental protection
by: Rangan, B. Vijaya
Published: (2014) -
Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition
by: Nath, Pradip, et al.
Published: (2014) -
Reinforced Geopolymer Concrete after Exposure to Fire
by: Sarker, Prabir, et al.
Published: (2011) -
Fly Ash Based Geopolymer Concrete with Recycled Concrete Aggregate
by: Galvin, Benjamin, et al.
Published: (2011)