Novel and potential chemical sensors for Au(III) ion detection and recovery in electric waste samples

In this study, we described the development of new-developed chemical sensors to detect ultra-trace level of gold (Au(III)) ions in waste electric samples. The structured sensors were constructed using highly porous nanosphere as a carrier afterwards the decorating in the effective way with organic...

Full description

Bibliographic Details
Main Authors: Shahat, A., Mohamed, M.H., Awual, Rabiul, Mohamed, S.K.
Format: Journal Article
Language:English
Published: ELSEVIER 2020
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/88607
Description
Summary:In this study, we described the development of new-developed chemical sensors to detect ultra-trace level of gold (Au(III)) ions in waste electric samples. The structured sensors were constructed using highly porous nanosphere as a carrier afterwards the decorating in the effective way with organic ligand particles of 2,5 dimercapto-1,3,4 thiadiazole (DMcT) to produce DMcT sensor and with 2-amino-5-mercapto-1,3,4-thiadiazole (AMTD) to fabricate AMDT sensor. The ability of the sensors toward the recognition of Au(III) ions was enhanced by the using of nanoparticles with their unique characters as a carrier in the sensors, hence increased the sensors capacities to sense the Au(III) ions (and thus recovering from electronic wastes) with extra sensitivity, selectivity, and a lower detection limit was achieved. Moreover, the developed chemical sensors have the ability for detecting Au(III) ions spectrophotometry even at trace concentration level of Au(III) ions (~0.22 μg/L) in rapid, straightforward procedure and fast process. The sensors were tested for detection of Au(III) ions in electronic waste samples.