Advances in graphene oxide based nanobiocatalytic technology for wastewater treatment

The continuous introduction of contaminated pollutants into water bodies through urbanization and industrialization has caused a severe treat to human and aquatic lives. The innovative development of effective materials to eliminate these pollutants from water bodies is an emerging area of research....

Full description

Bibliographic Details
Main Authors: Obayomi, Kehinde Shola, Lau, Sie Yon, Danquah, M., Tung, Evelyn, Takeo, M.
Format: Journal Article
Published: 2022
Online Access:http://hdl.handle.net/20.500.11937/88333
Description
Summary:The continuous introduction of contaminated pollutants into water bodies through urbanization and industrialization has caused a severe treat to human and aquatic lives. The innovative development of effective materials to eliminate these pollutants from water bodies is an emerging area of research. Graphene oxide-based materials and their application in removing pollutants from wastewater is gaining attention recently due to their exceptional properties. Advancements towards the development and surface modification of graphene-oxide based materials have revealed their suitability as carriers for enzyme immobilization. Graphene-oxide based materials provide a suitable support for the immobilization of enzymes with different properties without compromising functionality, creating a novel nanobiocatalyst adsorbent platform for environmental remediation. This article discusses recent advances relating to the synthesis of graphene oxide, methods of enzyme immobilization, development of graphene-based carriers for enzyme immobilization, and the application of graphene-based nanobiocatalyst in environmental remediation. In addition, various parameters that affect the immobilization of enzymes on graphene-based substrate were also discussed. The article concludes the future prospects focusing on opportunities associated with multifaceted nanobiocatalyst.