| Summary: | The continuous introduction of contaminated pollutants into water bodies through urbanization and industrialization has caused a severe treat to human and aquatic lives. The innovative development of effective materials to eliminate these pollutants from water bodies is an emerging area of research. Graphene oxide-based materials and their application in removing pollutants from wastewater is gaining attention recently due to their exceptional properties. Advancements towards the development and surface modification of graphene-oxide based materials have revealed their suitability as carriers for enzyme immobilization. Graphene-oxide based materials provide a suitable support for the immobilization of enzymes with different properties without compromising functionality, creating a novel nanobiocatalyst adsorbent platform for environmental remediation. This article discusses recent advances relating to the synthesis of graphene oxide, methods of enzyme immobilization, development of graphene-based carriers for enzyme immobilization, and the application of graphene-based nanobiocatalyst in environmental remediation. In addition, various parameters that affect the immobilization of enzymes on graphene-based substrate were also discussed. The article concludes the future prospects focusing on opportunities associated with multifaceted nanobiocatalyst.
|