Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia

Neoproterozoic granitic intrusions in South China have traditionally been interpreted as related to orogenesis, marking thecratonisation of the Yangtze Block. However, a number of ca. 830-820 Ma granitoids and mafic-ultramafic intrusions unconformablyoverlain by Neoproterozoic rift successions have...

Full description

Bibliographic Details
Main Authors: Li, Zheng-Xiang, Kinny, Peter, Zhou, H.
Format: Journal Article
Published: Elsevier Science BV 2003
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/8470
_version_ 1848745667920396288
author Li, Zheng-Xiang
Kinny, Peter
Zhou, H.
author_facet Li, Zheng-Xiang
Kinny, Peter
Zhou, H.
author_sort Li, Zheng-Xiang
building Curtin Institutional Repository
collection Online Access
description Neoproterozoic granitic intrusions in South China have traditionally been interpreted as related to orogenesis, marking thecratonisation of the Yangtze Block. However, a number of ca. 830-820 Ma granitoids and mafic-ultramafic intrusions unconformablyoverlain by Neoproterozoic rift successions have recently been reinterpreted as being related to a mantle plume duringthe breakup of the supercontinent Rodinia. In this paper, we report SHRIMP zircon U-Pb ages from granitoids and gabbros thatare closely related to the Neoproterozoic rifting event, and one age from a volcanic unit in the rift successions. We demonstrate that there were two major phases of widespread bimodal magmatism in South China during the Neoproterozoic. The first one,at ca. 830-795 Ma, started before the continental rift but continued into the first two stages of the rifting. The second one, ca.780-745 Ma, occurred during the later stages of the rifting. Some co-magmatic mafic dykes have rare-earth element and traceelement distribution characteristic of continental flood basalts. Similar age patterns of Neoproterozoic anorogenic magmatismare recorded in most other Rodinian continental blocks, such as Australia, India, Madagascar, Seychelles, southern Africa andLaurentia. The widespread occurrence and protracted duration (ca. 85 million years) of such anorogenic magmatism require alarge and sustained heat source. We interpret these magmatism as results of a mantle superplume beneath Rodinia, which wasresponsible for the breakup of the supercontinent during the Neoproterozoic.
first_indexed 2025-11-14T06:21:01Z
format Journal Article
id curtin-20.500.11937-8470
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T06:21:01Z
publishDate 2003
publisher Elsevier Science BV
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-84702017-09-13T16:06:25Z Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia Li, Zheng-Xiang Kinny, Peter Zhou, H. Rodinia South China Mantle plume Superplume Magmatism Neoproterozoic Neoproterozoic granitic intrusions in South China have traditionally been interpreted as related to orogenesis, marking thecratonisation of the Yangtze Block. However, a number of ca. 830-820 Ma granitoids and mafic-ultramafic intrusions unconformablyoverlain by Neoproterozoic rift successions have recently been reinterpreted as being related to a mantle plume duringthe breakup of the supercontinent Rodinia. In this paper, we report SHRIMP zircon U-Pb ages from granitoids and gabbros thatare closely related to the Neoproterozoic rifting event, and one age from a volcanic unit in the rift successions. We demonstrate that there were two major phases of widespread bimodal magmatism in South China during the Neoproterozoic. The first one,at ca. 830-795 Ma, started before the continental rift but continued into the first two stages of the rifting. The second one, ca.780-745 Ma, occurred during the later stages of the rifting. Some co-magmatic mafic dykes have rare-earth element and traceelement distribution characteristic of continental flood basalts. Similar age patterns of Neoproterozoic anorogenic magmatismare recorded in most other Rodinian continental blocks, such as Australia, India, Madagascar, Seychelles, southern Africa andLaurentia. The widespread occurrence and protracted duration (ca. 85 million years) of such anorogenic magmatism require alarge and sustained heat source. We interpret these magmatism as results of a mantle superplume beneath Rodinia, which wasresponsible for the breakup of the supercontinent during the Neoproterozoic. 2003 Journal Article http://hdl.handle.net/20.500.11937/8470 10.1016/S0301-9268(02)00208-5 Elsevier Science BV restricted
spellingShingle Rodinia
South China
Mantle plume
Superplume
Magmatism
Neoproterozoic
Li, Zheng-Xiang
Kinny, Peter
Zhou, H.
Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia
title Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia
title_full Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia
title_fullStr Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia
title_full_unstemmed Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia
title_short Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia
title_sort geochronology of neoproterozoic syn-rift magmatism in the yangtze craton, south china and correlations with other continents: evidence for a mantle superplume that broke up rodinia
topic Rodinia
South China
Mantle plume
Superplume
Magmatism
Neoproterozoic
url http://hdl.handle.net/20.500.11937/8470