GWAS analysis reveals distinct pathogenicity profiles of Australian Parastagonospora nodorum isolates and identification of marker-trait-associations to septoria nodorum blotch
The fungus Parastagonospora nodorum is the causal agent of septoria nodorum leaf blotch (SNB) and glume blotch which are common in many wheat growing regions in the world. The disease is complex and could be explained by multiple interactions between necrotrophic effectors secreted by the pathogen a...
| Main Authors: | Phan, Huyen, Furuki, Eiko, Hunziker, Lukas, Clarke, Kasia, Tan, Kar-Chun |
|---|---|
| Format: | Journal Article |
| Published: |
Nature Publishing Group
2021
|
| Online Access: | http://hdl.handle.net/20.500.11937/83627 |
Similar Items
Novel sources of resistance to septoria nodorum blotch in the Vavilov wheat collection identified by GWAS
by: Phan, H., et al.
Published: (2018)
by: Phan, H., et al.
Published: (2018)
Low Amplitude Boom-and-Bust Cycles Define the Septoria Nodorum Blotch Interaction
by: Phan, Huyen T. T., et al.
Published: (2020)
by: Phan, Huyen T. T., et al.
Published: (2020)
Genome-wide association mapping of resistance to septoria nodorum leaf blotch in a nordic spring wheat collection
by: Ruud, A.K., et al.
Published: (2019)
by: Ruud, A.K., et al.
Published: (2019)
Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies
by: Phan, H., et al.
Published: (2018)
by: Phan, H., et al.
Published: (2018)
Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
Septoria nodorum blotch of wheat: disease management and resistance breeding in the face of shifting disease dynamics and a changing environment.
by: Downie, Rowena Cathryn, et al.
Published: (2020)
by: Downie, Rowena Cathryn, et al.
Published: (2020)
Comprehensive annotation of the Parastagonospora nodorum reference genome using next-generation genomics, transcriptomics and proteogenomics
by: Syme, Robert, et al.
Published: (2016)
by: Syme, Robert, et al.
Published: (2016)
Identification and cross-validation of genetic loci conferring resistance to Septoria nodorum blotch using a German multi-founder winter wheat population
by: Lin, Min, et al.
Published: (2020)
by: Lin, Min, et al.
Published: (2020)
Sensitivity to three Parastagonospora nodorum necrotrophic effectors in current Australian wheat cultivars and the presence of further fungal effectors
by: Tan, Kar-Chun, et al.
Published: (2013)
by: Tan, Kar-Chun, et al.
Published: (2013)
Assessing European wheat sensitivities to parastagonospora nodorum necrotrophic effectors and fine-mapping the Snn3-B1 locus conferring sensitivity to the effector SnTox3
by: Downie, R., et al.
Published: (2018)
by: Downie, R., et al.
Published: (2018)
Characterisation of transcriptional elements regulating
virulence during Parastagonospora nodorum infection of
wheat
by: John, Evan Johann
Published: (2021)
by: John, Evan Johann
Published: (2021)
Genetic mapping using a wheat multi-founder population reveals a locus on chromosome 2A controlling resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum
by: Lin, M., et al.
Published: (2020)
by: Lin, M., et al.
Published: (2020)
Mannitol is required for asexual sporulation in the wheat pathogen Stagonospora nodorum (glume blotch)
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
An In planta-expressed polyketide synthase produces (R)-mellein in the wheat pathogen Parastagonospora nodorum
by: Chooi, Y., et al.
Published: (2015)
by: Chooi, Y., et al.
Published: (2015)
Chromosome-level genome assembly and manually-curated proteome of model necrotroph Parastagonospora nodorum Sn15 reveals a genome-wide trove of candidate effector homologs, and redundancy of virulence-related functions within an accessory chromosome
by: Bertazzoni, Stefania, et al.
Published: (2021)
by: Bertazzoni, Stefania, et al.
Published: (2021)
A genome-wide survey of the secondary metabolite biosynthesis genes in the wheat pathogen Parastagonospora nodorum
by: Chooi, Y., et al.
Published: (2014)
by: Chooi, Y., et al.
Published: (2014)
Validation of genome-wide association studies as a tool to identify virulence factors in parastagonospora nodorum
by: Gao, Y., et al.
Published: (2016)
by: Gao, Y., et al.
Published: (2016)
Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum-wheat pathosystem
by: Gao, Y., et al.
Published: (2015)
by: Gao, Y., et al.
Published: (2015)
SnPKS19 encodes the polyketide synthase for alternariol mycotoxin biosynthesis in the wheat pathogen Parastagonospora nodorum
by: Chooi, Y., et al.
Published: (2015)
by: Chooi, Y., et al.
Published: (2015)
The Velvet transcription factor PnVeA regulates necrotrophic effectors and secondary metabolism in the wheat pathogen Parastagonospora nodorum
by: Morikawa, Shota, et al.
Published: (2024)
by: Morikawa, Shota, et al.
Published: (2024)
Dissecting the role of histidine kinase and Hog1 mitogen-activated protein kinase signalling in stress tolerance and pathogenicity of Parastagonospora nodorum on wheat.
by: John, E., et al.
Published: (2016)
by: John, E., et al.
Published: (2016)
Functional genomics-guided discovery of a light-activated phytotoxin in the wheat pathogen Parastagonospora nodorum via pathway activation
by: Chooi, Y., et al.
Published: (2017)
by: Chooi, Y., et al.
Published: (2017)
Mapping and characterisation of resistance to Septoria tritici blotch in winter wheat
by: Seed, Patrick
Published: (2023)
by: Seed, Patrick
Published: (2023)
Understanding the role of photoprotection in
disease resistance to Septoria Tritici Blotch in wheat
by: Angelopoulou, Dimitra
Published: (2022)
by: Angelopoulou, Dimitra
Published: (2022)
Fine-mapping the wheat Snn1 locus conferring sensitivity to the Parastagonospora nodorum necrotrophic effector SnTox1 using an eight founder multiparent advanced generation inter-cross population
by: Cockram, J., et al.
Published: (2015)
by: Cockram, J., et al.
Published: (2015)
Understanding the molecular basis of disease resistance
against Septoria Tritici Blotch in wheat
by: Stephens, Christopher
Published: (2022)
by: Stephens, Christopher
Published: (2022)
Characterisation of major gene (Stb)-mediated resistance to Septoria tritici blotch disease in wheat
by: Tidd, Henry James
Published: (2024)
by: Tidd, Henry James
Published: (2024)
Metabolite profiling identifies the mycotoxin alternariol in the pathogen Stagonospora nodorum
by: Tan, Kar-Chun, et al.
Published: (2009)
by: Tan, Kar-Chun, et al.
Published: (2009)
Pathogenicity of Stagonospora nodorum requires malate synthase
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum
by: Lowe, R., et al.
Published: (2009)
by: Lowe, R., et al.
Published: (2009)
Malayamycin, a new streptomycete antifungal compound, specifically inhibits sporulation of Stagonospora nodorum (Berk) Castell and Germano, the cause of wheat glume blotch disease
by: Li, W., et al.
Published: (2008)
by: Li, W., et al.
Published: (2008)
Wheat lines exhibiting variation in tolerance of Septoria tritici blotch differentiated by grain source limitation
by: Collin, F., et al.
Published: (2018)
by: Collin, F., et al.
Published: (2018)
Stagonospora nodorum: From pathology to genomics and host resistance
by: Oliver, Richard, et al.
Published: (2012)
by: Oliver, Richard, et al.
Published: (2012)
Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2005)
by: Solomon, P., et al.
Published: (2005)
Investigating the role of calcium/calmodulin-dependent protein kinases in Stagonospora nodorum
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
The utilisation of di/tri peptides by Stagonospora nodorum is dispensable for wheat infection
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Photochemical characterization of a novel fungal rhodopsin from Phaeosphaeria nodorum
by: Fan, Ying, et al.
Published: (2011)
by: Fan, Ying, et al.
Published: (2011)
Proteomic identification of extracellular proteins regulated by the Gna1 Gα subunit in Stagonospora nodorum
by: Tan, Kar-Chun, et al.
Published: (2009)
by: Tan, Kar-Chun, et al.
Published: (2009)
The Disruption of a Gα Subunit Sheds New Light on the Pathogenicity of Stagonospora nodorum on Wheat
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
The use of pentaploid crosses for durum wheat improvement to Septoria tritici blotch disease resistance and D-genome introgression into durum wheat
by: Othmeni, Manel
Published: (2019)
by: Othmeni, Manel
Published: (2019)
Similar Items
-
Novel sources of resistance to septoria nodorum blotch in the Vavilov wheat collection identified by GWAS
by: Phan, H., et al.
Published: (2018) -
Low Amplitude Boom-and-Bust Cycles Define the Septoria Nodorum Blotch Interaction
by: Phan, Huyen T. T., et al.
Published: (2020) -
Genome-wide association mapping of resistance to septoria nodorum leaf blotch in a nordic spring wheat collection
by: Ruud, A.K., et al.
Published: (2019) -
Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies
by: Phan, H., et al.
Published: (2018) -
Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat
by: Solomon, P., et al.
Published: (2006)