Hydrogen induced slowdown of spallation in high entropy alloy under shock loading

Hydrogen embrittlement is ubiquitous in metals and alloys exposed to hydrogen, which has been extensively studied over a century. In contrast to traditional alloys, mechanisms of hydrogen embrittlement under shock loading are poorly understood, especially in recently emerging multi-principle element...

Full description

Bibliographic Details
Main Authors: Xie, Z.C., Li, C., Wang, H.Y., Lu, Chunsheng, Dai, L.H.
Format: Journal Article
Published: 2021
Online Access:http://hdl.handle.net/20.500.11937/83416
Description
Summary:Hydrogen embrittlement is ubiquitous in metals and alloys exposed to hydrogen, which has been extensively studied over a century. In contrast to traditional alloys, mechanisms of hydrogen embrittlement under shock loading are poorly understood, especially in recently emerging multi-principle element and chemically disordered high entropy alloys (HEAs). By using a specially designed double-target technique, an unexpected phenomenon of hydrogen-retarded spallation was observed in CrMnFeCoNi HEA under plate impact loading. To reveal the underlying mechanism, a trans-scale statistical damage mechanics model was developed based on microstructural characterization and first principles calculations. The hydrogen-retarded nucleation of micro-voids is attributed to hydrogen-vacancy complexes with high migration energy, while formation of nano-twins with high resistance reduces their growth rate. These results shed light on the better understanding of hydrogen embrittlement in chemically complex HEAs.