Coupled electrochemical-mechanical modeling with strain gradient plasticity for lithium-ion battery electrodes
© 2021 Elsevier Masson SAS We first present a model coupling the electrochemical reaction with strain gradient plasticity for a spherical electrode, which aims to analyze the evolutions and distributions of electrochemical-reaction dislocations and diffusion-induced stress during lithiation proc...
| Main Authors: | Wang, Y., Wu, H., Sun, L., Jiang, W., Lu, Chunsheng, Ma, Z. |
|---|---|
| Format: | Journal Article |
| Published: |
2021
|
| Online Access: | http://hdl.handle.net/20.500.11937/82714 |
Similar Items
An electrochemical-irradiated plasticity model for metallic electrodes in lithium-ion batteries
by: Ma, Z., et al.
Published: (2017)
by: Ma, Z., et al.
Published: (2017)
Fracture predictions based on a coupled chemo-mechanical model with strain gradient plasticity theory for film electrodes of Li-ion batteries
by: Chen, Y., et al.
Published: (2021)
by: Chen, Y., et al.
Published: (2021)
Double effect of electrochemical reaction and substrateon hardness in electrodes of lithium-ion batteries
by: Wang, Y., et al.
Published: (2016)
by: Wang, Y., et al.
Published: (2016)
A constitutive model coupling irradiation with two-phase lithiation for lithium-ion battery electrodes
by: Wu, H., et al.
Published: (2019)
by: Wu, H., et al.
Published: (2019)
Softening by electrochemical reaction-induced dislocations in lithium-ion batteries
by: Ma, Z., et al.
Published: (2017)
by: Ma, Z., et al.
Published: (2017)
Failure prediction of high-capacity electrode materials in lithium-ion batteries
by: Wang, C., et al.
Published: (2016)
by: Wang, C., et al.
Published: (2016)
Stress-strain relationships of LixSn alloys for lithium ion batteries
by: Gao, X., et al.
Published: (2016)
by: Gao, X., et al.
Published: (2016)
A chemo-mechanical model coupled with thermal effect on the hollow core–shell electrodes in lithium-ion batteries
by: Hu, B., et al.
Published: (2017)
by: Hu, B., et al.
Published: (2017)
Modeling diffusion–induced stress on two-phase lithiation in lithium-ion batteries
by: Wu, H., et al.
Published: (2018)
by: Wu, H., et al.
Published: (2018)
Effects of size and concentration on diffusion-induced stress in lithium-ion batteries
by: Ma, Z., et al.
Published: (2016)
by: Ma, Z., et al.
Published: (2016)
Synthesis And Electrochemical Behavior Of Lifepo4/C With Air-Electrode For Aqueous Lithium Ion Battery
by: Alias, Nurhaswani
Published: (2015)
by: Alias, Nurhaswani
Published: (2015)
Optimal design of hollow core-shell structural active materials for lithium ion batteries
by: Jiang, W., et al.
Published: (2015)
by: Jiang, W., et al.
Published: (2015)
A twins-structural Sn@C core–shell composite as anode materials for lithium-ion batteries
by: Wang, Y., et al.
Published: (2016)
by: Wang, Y., et al.
Published: (2016)
Anisotropic mechanical properties of Si anodes in a lithiation process of lithium-ion batteries
by: Wang, D., et al.
Published: (2018)
by: Wang, D., et al.
Published: (2018)
A kinetic model for diffusion and chemical reaction of silicon anode lithiation in lithium ion batteries
by: Xie, Z., et al.
Published: (2016)
by: Xie, Z., et al.
Published: (2016)
SnO2/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries with enhanced cyclability.
by: Jiang, W., et al.
Published: (2016)
by: Jiang, W., et al.
Published: (2016)
Advanced amorphous nanoporous stannous oxide composite with carbon nanotubes as anode materials for lithium-ion batteries
by: Jiang, W., et al.
Published: (2014)
by: Jiang, W., et al.
Published: (2014)
Review: Two-dimensional layered material based electrodes for lithium ion and sodium ion batteries
by: Javed, Omama, et al.
Published: (2022)
by: Javed, Omama, et al.
Published: (2022)
Electrochemical Characterization Of Lithium Vanadium Oxide Anode With Agar Binder In Aqueous Rechargeable Lithium Ion Batteries
by: Lease, Jacqueline
Published: (2018)
by: Lease, Jacqueline
Published: (2018)
High performances niobium oxides based negative electrode for lithium ion batteries
by: Ji, Qing
Published: (2021)
by: Ji, Qing
Published: (2021)
Recovery of positive electrode active material from spent lithium-ion battery
by: Widijatmoko, Samuel D
Published: (2020)
by: Widijatmoko, Samuel D
Published: (2020)
Investigating solid electrolyte interphases on negative electrodes for beyond lithium-ion batteries
by: Dimogiannis, Konstantinos
Published: (2023)
by: Dimogiannis, Konstantinos
Published: (2023)
Cobalt Oxide Supercapacitor Electrode Recovered from Spent Lithium-Ion Battery
by: Aboelazm, Eslam A. A., et al.
Published: (2018)
by: Aboelazm, Eslam A. A., et al.
Published: (2018)
Understanding degradation in lithium-ion and lithium-air batteries
by: McNulty, Rory
Published: (2023)
by: McNulty, Rory
Published: (2023)
Sandwich-like CNTs@SnO2/SnO/Sn anodes on three-dimensional Ni foam substrate for lithium ion batteries
by: Zhang, J., et al.
Published: (2016)
by: Zhang, J., et al.
Published: (2016)
Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance
by: Liu, H., et al.
Published: (2011)
by: Liu, H., et al.
Published: (2011)
Addressing preliminary challenges in upscaling the recovery of lithium from spent lithium ion batteries by the electrochemical method: a review
by: Kasri, Mohamad Arif, et al.
Published: (2024)
by: Kasri, Mohamad Arif, et al.
Published: (2024)
Mathematical Modelling of Lithium-ion Concentration in Rechargeable Lithium Batteries
by: Siti Aishah Hashim Ali,
Published: (2011)
by: Siti Aishah Hashim Ali,
Published: (2011)
Study for detection of metallic contaminant in electrode of lithium-ion battery using a Hall probe
by: Abdul Azim, Jais
Published: (2012)
by: Abdul Azim, Jais
Published: (2012)
Nanocellulose-based separators in lithium-ion battery
by: Mathew, Manjusha Elizabeth, et al.
Published: (2024)
by: Mathew, Manjusha Elizabeth, et al.
Published: (2024)
A ternary sulphonium composite Cu3BiS3/S as cathode materials for lithium–sulfur batteries
by: Gao, X., et al.
Published: (2016)
by: Gao, X., et al.
Published: (2016)
Selective liberation in dry milled spent lithium-ion batteries
by: Widijatmoko, Samuel D., et al.
Published: (2019)
by: Widijatmoko, Samuel D., et al.
Published: (2019)
Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries
by: Zhao, B., et al.
Published: (2012)
by: Zhao, B., et al.
Published: (2012)
Ten major challenges for sustainable lithium-ion batteries
by: Ramasubramanian, Brindha, et al.
Published: (2024)
by: Ramasubramanian, Brindha, et al.
Published: (2024)
Dental resin monomer enables unique NbO2/carbon lithium‐ion battery negative electrode with exceptional performance
by: Ji, Qing, et al.
Published: (2019)
by: Ji, Qing, et al.
Published: (2019)
Sulfur@metal cotton with superior cycling stability as cathode materials for rechargeable lithium–sulfur batteries
by: Zhang, J., et al.
Published: (2015)
by: Zhang, J., et al.
Published: (2015)
Ballmilling-assisted synthesis and electrochemical performance of LiFePO4/C for lithium-ion battery adopting citric acid as carbon precursor
by: Zhang, D., et al.
Published: (2009)
by: Zhang, D., et al.
Published: (2009)
Real-Time Displacement and Strain Mappings of Lithium-Ion Batteries Using Three-Dimensional Digital Image Correlation
by: P. K., Leung, et al.
Published: (2014)
by: P. K., Leung, et al.
Published: (2014)
Consistent integration schemes for meshfree analysis of strain gradient elasticity
by: Wang, B.B., et al.
Published: (2019)
by: Wang, B.B., et al.
Published: (2019)
A meshfree method with gradient smoothing for free vibration and buckling analysis of a strain gradient thin plate
by: Wang, B.B., et al.
Published: (2021)
by: Wang, B.B., et al.
Published: (2021)
Similar Items
-
An electrochemical-irradiated plasticity model for metallic electrodes in lithium-ion batteries
by: Ma, Z., et al.
Published: (2017) -
Fracture predictions based on a coupled chemo-mechanical model with strain gradient plasticity theory for film electrodes of Li-ion batteries
by: Chen, Y., et al.
Published: (2021) -
Double effect of electrochemical reaction and substrateon hardness in electrodes of lithium-ion batteries
by: Wang, Y., et al.
Published: (2016) -
A constitutive model coupling irradiation with two-phase lithiation for lithium-ion battery electrodes
by: Wu, H., et al.
Published: (2019) -
Softening by electrochemical reaction-induced dislocations in lithium-ion batteries
by: Ma, Z., et al.
Published: (2017)