Linking Atmospheric Oxygenation to the Deep Earth
This thesis proposes a model for the co-evolution of the Earth’s interior and surface environment. Specifically, this model suggests that the emergence of continents above sea-level 2.4 billion years ago led to a flush of nutrients into the oceans providing a boost for photosynthetic bacteria. Event...
| Main Author: | |
|---|---|
| Format: | Thesis |
| Published: |
Curtin University
2020
|
| Online Access: | http://hdl.handle.net/20.500.11937/82608 |
| Summary: | This thesis proposes a model for the co-evolution of the Earth’s interior and surface environment. Specifically, this model suggests that the emergence of continents above sea-level 2.4 billion years ago led to a flush of nutrients into the oceans providing a boost for photosynthetic bacteria. Eventually, these processes and concomitant changes in the composition of volcanic gases and weathering patterns led to the rise of oxygen in our atmosphere, enabling the development of complex life. |
|---|