Materials for hydrogen-based energy storage – past, recent progress and future outlook
© 2020 The Authors Globally, the accelerating use of renewable energy sources, enabled by increased efficiencies and reduced costs, and driven by the need to mitigate the effects of climate change, has significantly increased research in the areas of renewable energy production, storage, distrib...
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Journal Article |
| Language: | English |
| Published: |
ELSEVIER SCIENCE SA
2020
|
| Subjects: | |
| Online Access: | http://dx.doi.org/10.1016/j.jallcom.2019.153548 http://hdl.handle.net/20.500.11937/82257 |
| _version_ | 1848764487280099328 |
|---|---|
| author | Hirscher, M. Yartys, V.A. Baricco, M. Bellosta von Colbe, J. Blanchard, D. Bowman, R.C. Broom, D.P. Buckley, Craig Chang, F. Chen, P. Cho, Y.W. Crivello, J.C. Cuevas, F. David, W.I.F. de Jongh, P.E. Denys, R.V. Dornheim, M. Felderhoff, M. Filinchuk, Y. Froudakis, G.E. Grant, D.M. Gray, E.M.A. Hauback, B.C. He, T. Humphries, Terry Jensen, T.R. Kim, S. Kojima, Y. Latroche, M. Li, H.W. Lototskyy, M.V. Makepeace, J.W. Møller, K.T. Naheed, L. Ngene, P. Noréus, D. Nygård, M.M. Orimo, S.I. Paskevicius, Mark Pasquini, L. Ravnsbæk, D.B. Veronica Sofianos, M. Udovic, T.J. Vegge, T. Walker, G.S. Webb, C.J. Weidenthaler, C. Zlotea, C. |
| author_facet | Hirscher, M. Yartys, V.A. Baricco, M. Bellosta von Colbe, J. Blanchard, D. Bowman, R.C. Broom, D.P. Buckley, Craig Chang, F. Chen, P. Cho, Y.W. Crivello, J.C. Cuevas, F. David, W.I.F. de Jongh, P.E. Denys, R.V. Dornheim, M. Felderhoff, M. Filinchuk, Y. Froudakis, G.E. Grant, D.M. Gray, E.M.A. Hauback, B.C. He, T. Humphries, Terry Jensen, T.R. Kim, S. Kojima, Y. Latroche, M. Li, H.W. Lototskyy, M.V. Makepeace, J.W. Møller, K.T. Naheed, L. Ngene, P. Noréus, D. Nygård, M.M. Orimo, S.I. Paskevicius, Mark Pasquini, L. Ravnsbæk, D.B. Veronica Sofianos, M. Udovic, T.J. Vegge, T. Walker, G.S. Webb, C.J. Weidenthaler, C. Zlotea, C. |
| author_sort | Hirscher, M. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | © 2020 The Authors
Globally, the accelerating use of renewable energy sources, enabled by increased efficiencies and reduced costs, and driven by the need to mitigate the effects of climate change, has significantly increased research in the areas of renewable energy production, storage, distribution and end-use. Central to this discussion is the use of hydrogen, as a clean, efficient energy vector for energy storage. This review, by experts of Task 32, “Hydrogen-based Energy Storage” of the International Energy Agency, Hydrogen TCP, reports on the development over the last 6 years of hydrogen storage materials, methods and techniques, including electrochemical and thermal storage systems. An overview is given on the background to the various methods, the current state of development and the future prospects. The following areas are covered; porous materials, liquid hydrogen carriers, complex hydrides, intermetallic hydrides, electrochemical storage of energy, thermal energy storage, hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage. |
| first_indexed | 2025-11-14T11:20:08Z |
| format | Journal Article |
| id | curtin-20.500.11937-82257 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| language | English |
| last_indexed | 2025-11-14T11:20:08Z |
| publishDate | 2020 |
| publisher | ELSEVIER SCIENCE SA |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-822572021-01-13T06:45:29Z Materials for hydrogen-based energy storage – past, recent progress and future outlook Hirscher, M. Yartys, V.A. Baricco, M. Bellosta von Colbe, J. Blanchard, D. Bowman, R.C. Broom, D.P. Buckley, Craig Chang, F. Chen, P. Cho, Y.W. Crivello, J.C. Cuevas, F. David, W.I.F. de Jongh, P.E. Denys, R.V. Dornheim, M. Felderhoff, M. Filinchuk, Y. Froudakis, G.E. Grant, D.M. Gray, E.M.A. Hauback, B.C. He, T. Humphries, Terry Jensen, T.R. Kim, S. Kojima, Y. Latroche, M. Li, H.W. Lototskyy, M.V. Makepeace, J.W. Møller, K.T. Naheed, L. Ngene, P. Noréus, D. Nygård, M.M. Orimo, S.I. Paskevicius, Mark Pasquini, L. Ravnsbæk, D.B. Veronica Sofianos, M. Udovic, T.J. Vegge, T. Walker, G.S. Webb, C.J. Weidenthaler, C. Zlotea, C. Science & Technology Physical Sciences Technology Chemistry, Physical Materials Science, Multidisciplinary Metallurgy & Metallurgical Engineering Chemistry Materials Science Hydrogen storage materials Porous materials Liquid hydrogen carriers Complex metal hydrides Intermetallic hydrides Magnesium based materials Low dimensional hydrides Electrochemical energy storage Heat storage Hydrogen energy systems X-RAY-DIFFRACTION TRANSITION-METAL HYDRIDES IN-SITU NEUTRON HIGH-ENTROPY ALLOYS RE-BOROHYDRIDES RE AMMONIA DECOMPOSITION CATALYSTS NUCLEAR-MAGNETIC-RESONANCE MEDIATED NITROGEN TRANSFER DENSITY-FUNCTIONAL THEORY RARE-EARTH R © 2020 The Authors Globally, the accelerating use of renewable energy sources, enabled by increased efficiencies and reduced costs, and driven by the need to mitigate the effects of climate change, has significantly increased research in the areas of renewable energy production, storage, distribution and end-use. Central to this discussion is the use of hydrogen, as a clean, efficient energy vector for energy storage. This review, by experts of Task 32, “Hydrogen-based Energy Storage” of the International Energy Agency, Hydrogen TCP, reports on the development over the last 6 years of hydrogen storage materials, methods and techniques, including electrochemical and thermal storage systems. An overview is given on the background to the various methods, the current state of development and the future prospects. The following areas are covered; porous materials, liquid hydrogen carriers, complex hydrides, intermetallic hydrides, electrochemical storage of energy, thermal energy storage, hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage. 2020 Journal Article http://hdl.handle.net/20.500.11937/82257 10.1016/j.jallcom.2019.153548 English http://dx.doi.org/10.1016/j.jallcom.2019.153548 http://creativecommons.org/licenses/by-nc-nd/4.0/ ELSEVIER SCIENCE SA fulltext |
| spellingShingle | Science & Technology Physical Sciences Technology Chemistry, Physical Materials Science, Multidisciplinary Metallurgy & Metallurgical Engineering Chemistry Materials Science Hydrogen storage materials Porous materials Liquid hydrogen carriers Complex metal hydrides Intermetallic hydrides Magnesium based materials Low dimensional hydrides Electrochemical energy storage Heat storage Hydrogen energy systems X-RAY-DIFFRACTION TRANSITION-METAL HYDRIDES IN-SITU NEUTRON HIGH-ENTROPY ALLOYS RE-BOROHYDRIDES RE AMMONIA DECOMPOSITION CATALYSTS NUCLEAR-MAGNETIC-RESONANCE MEDIATED NITROGEN TRANSFER DENSITY-FUNCTIONAL THEORY RARE-EARTH R Hirscher, M. Yartys, V.A. Baricco, M. Bellosta von Colbe, J. Blanchard, D. Bowman, R.C. Broom, D.P. Buckley, Craig Chang, F. Chen, P. Cho, Y.W. Crivello, J.C. Cuevas, F. David, W.I.F. de Jongh, P.E. Denys, R.V. Dornheim, M. Felderhoff, M. Filinchuk, Y. Froudakis, G.E. Grant, D.M. Gray, E.M.A. Hauback, B.C. He, T. Humphries, Terry Jensen, T.R. Kim, S. Kojima, Y. Latroche, M. Li, H.W. Lototskyy, M.V. Makepeace, J.W. Møller, K.T. Naheed, L. Ngene, P. Noréus, D. Nygård, M.M. Orimo, S.I. Paskevicius, Mark Pasquini, L. Ravnsbæk, D.B. Veronica Sofianos, M. Udovic, T.J. Vegge, T. Walker, G.S. Webb, C.J. Weidenthaler, C. Zlotea, C. Materials for hydrogen-based energy storage – past, recent progress and future outlook |
| title | Materials for hydrogen-based energy storage – past, recent progress and future outlook |
| title_full | Materials for hydrogen-based energy storage – past, recent progress and future outlook |
| title_fullStr | Materials for hydrogen-based energy storage – past, recent progress and future outlook |
| title_full_unstemmed | Materials for hydrogen-based energy storage – past, recent progress and future outlook |
| title_short | Materials for hydrogen-based energy storage – past, recent progress and future outlook |
| title_sort | materials for hydrogen-based energy storage – past, recent progress and future outlook |
| topic | Science & Technology Physical Sciences Technology Chemistry, Physical Materials Science, Multidisciplinary Metallurgy & Metallurgical Engineering Chemistry Materials Science Hydrogen storage materials Porous materials Liquid hydrogen carriers Complex metal hydrides Intermetallic hydrides Magnesium based materials Low dimensional hydrides Electrochemical energy storage Heat storage Hydrogen energy systems X-RAY-DIFFRACTION TRANSITION-METAL HYDRIDES IN-SITU NEUTRON HIGH-ENTROPY ALLOYS RE-BOROHYDRIDES RE AMMONIA DECOMPOSITION CATALYSTS NUCLEAR-MAGNETIC-RESONANCE MEDIATED NITROGEN TRANSFER DENSITY-FUNCTIONAL THEORY RARE-EARTH R |
| url | http://dx.doi.org/10.1016/j.jallcom.2019.153548 http://hdl.handle.net/20.500.11937/82257 |