| Summary: | Based on such a complex device as a lithium-ion battery, where many concurrent events are occurringduring its operation, it is difficult to understand the intrinsic relationship of electrochemical fade andmechanical properties. With the help of advanced in situ technologies, electrochemistry-induced dislocationscan be visualized in real time. Here, for the first time, we build a bridge between hardness and state of charge (SOC) for electrodes in lithium-ion batteries by introducing electrochemistry-induced dislocations. Applyingthis model, we can consider the substrate effect in describing hardness and the SOC during charging anddischarging progresses. It may be used to monitor the SOC and provide new avenues for future applicationsof high-performance rechargeable batteries.
|