Double effect of electrochemical reaction and substrateon hardness in electrodes of lithium-ion batteries

Based on such a complex device as a lithium-ion battery, where many concurrent events are occurringduring its operation, it is difficult to understand the intrinsic relationship of electrochemical fade andmechanical properties. With the help of advanced in situ technologies, electrochemistry-induced...

Full description

Bibliographic Details
Main Authors: Wang, Y., Ma, Z., Lei, W., Zou, Y., Lu, Chunsheng
Format: Journal Article
Published: 2016
Online Access:http://hdl.handle.net/20.500.11937/8183
Description
Summary:Based on such a complex device as a lithium-ion battery, where many concurrent events are occurringduring its operation, it is difficult to understand the intrinsic relationship of electrochemical fade andmechanical properties. With the help of advanced in situ technologies, electrochemistry-induced dislocationscan be visualized in real time. Here, for the first time, we build a bridge between hardness and state of charge (SOC) for electrodes in lithium-ion batteries by introducing electrochemistry-induced dislocations. Applyingthis model, we can consider the substrate effect in describing hardness and the SOC during charging anddischarging progresses. It may be used to monitor the SOC and provide new avenues for future applicationsof high-performance rechargeable batteries.