Preoperative identification of cardiac surgery patients at risk of receiving a platelet transfusion: The Australian Cardiac Surgery Platelet Transfusion (ACSePT) risk prediction tool

© 2020 AABB Platelet (PLT) transfusions are limited and costly resources. Accurately predicting clinical demand while limiting product wastage remains difficult. A PLT transfusion prediction score was developed for use in cardiac surgery patients who commonly require PLT transfusions. Study De...

Full description

Bibliographic Details
Main Authors: Flint, A.W.J., Bailey, M., Reid, Christopher, Smith, J.A., Tran, L., Wood, E.M., McQuilten, Z.K., Reade, M.C.
Format: Journal Article
Language:English
Published: WILEY 2020
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/80803
Description
Summary:© 2020 AABB Platelet (PLT) transfusions are limited and costly resources. Accurately predicting clinical demand while limiting product wastage remains difficult. A PLT transfusion prediction score was developed for use in cardiac surgery patients who commonly require PLT transfusions. Study Design and Methods: Using the Australian and New Zealand Society of Cardiac and Thoracic Surgeons National Cardiac Surgery Database, significant predictors for PLT transfusion were identified by multivariate logistic regression. Using a development data set containing 2005 to 2016 data, the Australian Cardiac Surgery Platelet Transfusion (ACSePT) risk prediction tool was developed by assigning weights to each significant predictor that corresponded to a probability of PLT transfusion. The predicted probability for each score was compared to actual PLT transfusion occurrence in a validation (2017) data set. Results: The development data set contained 38 independent variables and 91 521 observations. The validation data set contained 12 529 observations. The optimal model contained 23 variables significant at P <.001 and an area under the receiver operating characteristic (ROC) curve of 0.69 (95% confidence interval [CI], 0.68-0.69). ACSePT contained nine variables and had an area under the ROC curve of 0.66 (95% CI, 0.65-0.66) and overall predicted probability of PLT transfusion of 19.8% for the validation data set compared to an observed risk of 20.3%. Conclusion: The ACSePT risk prediction tool is the first scoring system to predict a cardiac surgery patientʼs risk of receiving a PLT transfusion. It can be used to identify patients at higher risk of receiving PLT transfusions for inclusion in clinical trials and by PLT inventory managers to predict PLT demand.