Quantitative Analysis of Cyclic Voltammetry of Redox Monolayers Adsorbed on Semiconductors: Isolating Electrode Kinetics, Lateral Interactions, and Diode Currents

© 2019 American Chemical Society. The design of devices whose functions span from sensing their environments to converting light into electricity or guiding chemical reactivity at surfaces often hinges around a correct and complete understanding of the factors at play when charges are transferre...

Full description

Bibliographic Details
Main Authors: Vogel, Yan, Molina, A., Gonzalez, J., Ciampi, Simone
Format: Journal Article
Language:English
Published: AMER CHEMICAL SOC 2019
Subjects:
Online Access:http://purl.org/au-research/grants/arc/DP190100735
http://hdl.handle.net/20.500.11937/79496
Description
Summary:© 2019 American Chemical Society. The design of devices whose functions span from sensing their environments to converting light into electricity or guiding chemical reactivity at surfaces often hinges around a correct and complete understanding of the factors at play when charges are transferred across an electrified solid-liquid interface. For semiconductor electrodes in particular, published values for charge-transfer kinetic constants are scattered. Furthermore, received wisdom suggests slower charge-transfer kinetics for semiconductors than for metal electrodes. We have used cyclic voltammetry of ferrocene-modified silicon photoanodes and photocathodes as the experimental model system and described a systematic analysis to separate charge-transfer kinetics from diode effects and interactions between adsorbed species. Our results suggest that literature values of charge-transfer kinetic constants at semiconductor electrodes are likely to be underestimates of their actual values. This is revealed by experiments and analytical models showing that the description of the potential distribution across the semiconductor-monolayer-electrolyte interface has been largely oversimplified.