| Summary: | Activated carbon (AC) samples were modified using nitration followed by reduction to enhance their CO<inf>2</inf>adsorption capacities. Besides characterization of the samples, investigation of CO<inf>2</inf> capture performance was conducted by CO<inf>2</inf> isothermal adsorption, temperature-programmed (TP) CO<inf>2</inf> adsorption, cyclic CO<inf>2</inf>adsorption-desorption, and dynamic CO<inf>2</inf> adsorption tests. Almost all modified samples showed a rise in the amount of CO<inf>2</inf> adsorbed when the comparison is made in unit surface area. On the other hand, some of the samples displayed a capacity superior to that of the parent material when compared in mass unit, especially at elevated temperatures. Despite ∼65% decrease in the surface area, TP-CO<inf>2</inf> adsorption of the best samples exhibited increases of ∼10 and 70% in CO<inf>2</inf> capture capacity at 30 and 100°C, respectively.
|