Gas storage potential and electrohydraulic discharge (EHD) stimulation of coal seam interburden from the Surat Basin
This paper evaluates the potential methane storage capacity of six clay-rich interburden rock samples from coal seam gas (CSG) wells in the Surat Basin, Australia. Clay minerals identified in all samples included kaolinite, illite, smectite, and illite-smectite mixed-layers. The total organic carbon...
| Main Authors: | , , , , , |
|---|---|
| Format: | Journal Article |
| Language: | English |
| Published: |
ELSEVIER
2019
|
| Subjects: | |
| Online Access: | http://purl.org/au-research/grants/arc/DP150103467 http://hdl.handle.net/20.500.11937/78454 |
| _version_ | 1848763964849127424 |
|---|---|
| author | Ren, F. Ge, L. Arami-Niya, Arash Rufford, T.E. Xing, H. Rudolph, V. |
| author_facet | Ren, F. Ge, L. Arami-Niya, Arash Rufford, T.E. Xing, H. Rudolph, V. |
| author_sort | Ren, F. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | This paper evaluates the potential methane storage capacity of six clay-rich interburden rock samples from coal seam gas (CSG) wells in the Surat Basin, Australia. Clay minerals identified in all samples included kaolinite, illite, smectite, and illite-smectite mixed-layers. The total organic carbon concentrations in these interburden rocks ranged from 0.66–1.19 wt%, and thus these rocks can be classified as fair to good hydrocarbon source rocks. The effective porosity of the rocks determined from mercury intrusion porosimetry and helium pycnometry varied from 6.8% to 12.5%, and included volumes of micropores and mesopores. The adsorption isotherm results indicated that the average adsorption capacity of six interburden was 3.64 cm3/g, a value corresponding to approximately 20% that of Surat Basin coal. Based on the clay compositions and porosity of the samples, the permeability of these Surat interburden rocks is estimated to be <5 nano Darcy using Yang and Aplin's empirical correlation, which was too low for reliable measurement in our laboratory core flooding apparatus even with a differential pressure of 10 bar applied over a shortened 20 mm length core. However, after stimulation by electrohydraulic discharge (EHD) shockwaves the permeability of one of the interburden samples (S2) increased to 0.6 ± 0.11 mD due to development of fractures and new pores by the EHD stimulation. We characterised the development of the fractures after EHD shockwaves using x-ray computer tomography. The findings of this study suggest that dynamic shockwaves such as those generated by EHD have potential to increase permeability of soft and clay-rich interburden layers in CSG reservoirs and other layered reservoirs. This potentially opens these ultra-tight gas resources to exploitation and recovery. |
| first_indexed | 2025-11-14T11:11:50Z |
| format | Journal Article |
| id | curtin-20.500.11937-78454 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| language | English |
| last_indexed | 2025-11-14T11:11:50Z |
| publishDate | 2019 |
| publisher | ELSEVIER |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-784542021-04-23T01:18:30Z Gas storage potential and electrohydraulic discharge (EHD) stimulation of coal seam interburden from the Surat Basin Ren, F. Ge, L. Arami-Niya, Arash Rufford, T.E. Xing, H. Rudolph, V. Science & Technology Technology Physical Sciences Energy & Fuels Geosciences, Multidisciplinary Geology Coal seam gas Interburden Source rock Dynamic shockwaves Permeability WALLOON SUBGROUP PORE STRUCTURE ADSORPTION POROSITY SIZE ACCUMULATION QUEENSLAND METHANE MICRO CO2 This paper evaluates the potential methane storage capacity of six clay-rich interburden rock samples from coal seam gas (CSG) wells in the Surat Basin, Australia. Clay minerals identified in all samples included kaolinite, illite, smectite, and illite-smectite mixed-layers. The total organic carbon concentrations in these interburden rocks ranged from 0.66–1.19 wt%, and thus these rocks can be classified as fair to good hydrocarbon source rocks. The effective porosity of the rocks determined from mercury intrusion porosimetry and helium pycnometry varied from 6.8% to 12.5%, and included volumes of micropores and mesopores. The adsorption isotherm results indicated that the average adsorption capacity of six interburden was 3.64 cm3/g, a value corresponding to approximately 20% that of Surat Basin coal. Based on the clay compositions and porosity of the samples, the permeability of these Surat interburden rocks is estimated to be <5 nano Darcy using Yang and Aplin's empirical correlation, which was too low for reliable measurement in our laboratory core flooding apparatus even with a differential pressure of 10 bar applied over a shortened 20 mm length core. However, after stimulation by electrohydraulic discharge (EHD) shockwaves the permeability of one of the interburden samples (S2) increased to 0.6 ± 0.11 mD due to development of fractures and new pores by the EHD stimulation. We characterised the development of the fractures after EHD shockwaves using x-ray computer tomography. The findings of this study suggest that dynamic shockwaves such as those generated by EHD have potential to increase permeability of soft and clay-rich interburden layers in CSG reservoirs and other layered reservoirs. This potentially opens these ultra-tight gas resources to exploitation and recovery. 2019 Journal Article http://hdl.handle.net/20.500.11937/78454 10.1016/j.coal.2019.04.001 English http://purl.org/au-research/grants/arc/DP150103467 http://creativecommons.org/licenses/by-nc-nd/4.0/ ELSEVIER fulltext |
| spellingShingle | Science & Technology Technology Physical Sciences Energy & Fuels Geosciences, Multidisciplinary Geology Coal seam gas Interburden Source rock Dynamic shockwaves Permeability WALLOON SUBGROUP PORE STRUCTURE ADSORPTION POROSITY SIZE ACCUMULATION QUEENSLAND METHANE MICRO CO2 Ren, F. Ge, L. Arami-Niya, Arash Rufford, T.E. Xing, H. Rudolph, V. Gas storage potential and electrohydraulic discharge (EHD) stimulation of coal seam interburden from the Surat Basin |
| title | Gas storage potential and electrohydraulic discharge (EHD) stimulation of coal seam interburden from the Surat Basin |
| title_full | Gas storage potential and electrohydraulic discharge (EHD) stimulation of coal seam interburden from the Surat Basin |
| title_fullStr | Gas storage potential and electrohydraulic discharge (EHD) stimulation of coal seam interburden from the Surat Basin |
| title_full_unstemmed | Gas storage potential and electrohydraulic discharge (EHD) stimulation of coal seam interburden from the Surat Basin |
| title_short | Gas storage potential and electrohydraulic discharge (EHD) stimulation of coal seam interburden from the Surat Basin |
| title_sort | gas storage potential and electrohydraulic discharge (ehd) stimulation of coal seam interburden from the surat basin |
| topic | Science & Technology Technology Physical Sciences Energy & Fuels Geosciences, Multidisciplinary Geology Coal seam gas Interburden Source rock Dynamic shockwaves Permeability WALLOON SUBGROUP PORE STRUCTURE ADSORPTION POROSITY SIZE ACCUMULATION QUEENSLAND METHANE MICRO CO2 |
| url | http://purl.org/au-research/grants/arc/DP150103467 http://hdl.handle.net/20.500.11937/78454 |