Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes
In this study, renewable ethylene glycol (EG) was exploited as a potential fuel for solid oxide fuel cells (SOFCs) with conventional nickel yttria-stabilized zirconia (Ni–YSZ) cermet anodes for sustainable electric power generation. Carbon deposition behaviors over Ni–YSZ anodes under different carb...
| Main Authors: | Qu, J., Wang, Wei, Chen, Y., Wang, F., Ran, Ran, Shao, Zongping |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier Ltd
2015
|
| Online Access: | http://hdl.handle.net/20.500.11937/7725 |
Similar Items
Progress in Solid Oxide Fuel Cells with Nickel-Based Anodes Operating on Methane and Related Fuels
by: Wang, Wei, et al.
Published: (2013)
by: Wang, Wei, et al.
Published: (2013)
Study on proton-conducting solid oxide fuel cells with a conventional nickel cermet anode operating on dimethyl ether
by: Liu, Y., et al.
Published: (2011)
by: Liu, Y., et al.
Published: (2011)
Reducing the operation temperature of a solid oxide fuel cell using a conventional nickel-based cermet anode on dimethyl ether fuel through internal partial oxidation
by: Su, C., et al.
Published: (2011)
by: Su, C., et al.
Published: (2011)
Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes
by: Wang, Wei, et al.
Published: (2013)
by: Wang, Wei, et al.
Published: (2013)
Further performance enhancement of a DME-fueled solid oxide fuel cell by applying anode functional catalyst
by: Su, C., et al.
Published: (2012)
by: Su, C., et al.
Published: (2012)
A new Gd-promoted nickel catalyst for methane conversion to syngas and as an anode functional layer in a solid oxide fuel cell
by: Wang, W., et al.
Published: (2011)
by: Wang, W., et al.
Published: (2011)
A new nickel-ceria composite for direct-methane solid oxide fuel cells
by: Zhu, H., et al.
Published: (2013)
by: Zhu, H., et al.
Published: (2013)
Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures
by: Qu, J., et al.
Published: (2016)
by: Qu, J., et al.
Published: (2016)
Nickel-based anode with water storage capability to mediate carbon deposition for direct ethanol solid oxide fuel cells
by: Wang, W., et al.
Published: (2014)
by: Wang, W., et al.
Published: (2014)
Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas
by: Wang, F., et al.
Published: (2014)
by: Wang, F., et al.
Published: (2014)
Anodes for Carbon-Fueled Solid Oxide Fuel Cells
by: Zhou, W., et al.
Published: (2016)
by: Zhou, W., et al.
Published: (2016)
Rational Design of Superior, Coking-Resistant, Nickel-Based Anodes through Tailoring Interfacial Reactions for Solid Oxide Fuel Cells Operated on Methane Fuel
by: Qu, J., et al.
Published: (2018)
by: Qu, J., et al.
Published: (2018)
Recent advances in the development of anode materials for solid oxide fuel cells utilizing liquid oxygenated hydrocarbon fuels: A mini review
by: Wang, Wei, et al.
Published: (2018)
by: Wang, Wei, et al.
Published: (2018)
Combustion-synthesized Ru-Al2O3 composites as anode catalyst layer of a solid oxide fuel cell operating on methane
by: Wang, W., et al.
Published: (2011)
by: Wang, W., et al.
Published: (2011)
Single-chamber solid oxide fuel cells with nanocatalyst-modified anodes capable of in situ activation
by: Yang, G., et al.
Published: (2014)
by: Yang, G., et al.
Published: (2014)
Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel
by: Su, C., et al.
Published: (2010)
by: Su, C., et al.
Published: (2010)
Ceramic lithium ion conductor to solve the anode coking problem of practical solid oxide fuel cells
by: Wang, W., et al.
Published: (2015)
by: Wang, W., et al.
Published: (2015)
Enhanced Sulfur Tolerance of Nickel-Based Anodes for Oxygen-Ion Conducting Solid Oxide Fuel Cells by Incorporating a Secondary Water Storing Phase
by: Wang, F., et al.
Published: (2014)
by: Wang, F., et al.
Published: (2014)
Coking-free direct-methanol-flame fuel cell with traditional nickel-cermet anode
by: Sun, L., et al.
Published: (2010)
by: Sun, L., et al.
Published: (2010)
Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel
by: Su, C., et al.
Published: (2011)
by: Su, C., et al.
Published: (2011)
Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures
by: Su, Chao, et al.
Published: (2014)
by: Su, Chao, et al.
Published: (2014)
Nickel-Iron Alloy Nanoparticle-Decorated K2NiF4-Type Oxide as an Efficient and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells
by: Wu, N., et al.
Published: (2017)
by: Wu, N., et al.
Published: (2017)
A novel way to improve performance of proton-conducting solid-oxide fuel cells through enhanced chemical interaction of anode components
by: Guo, Y., et al.
Published: (2011)
by: Guo, Y., et al.
Published: (2011)
A comprehensive evaluation of a Ni-Al2O3 catalyst as a functional layer of solid-oxide fuel cell anode
by: Wang, W., et al.
Published: (2010)
by: Wang, W., et al.
Published: (2010)
Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer
by: Wang, W., et al.
Published: (2009)
by: Wang, W., et al.
Published: (2009)
Initialization of a methane-fueled single-chamber solid-oxide fuel cell with NiO + SDC anode and BSCF + SDC cathode
by: Zhang, C., et al.
Published: (2008)
by: Zhang, C., et al.
Published: (2008)
Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive
by: Wang, W., et al.
Published: (2014)
by: Wang, W., et al.
Published: (2014)
Synthesis of flake-shaped NiO-YSZ particles for high-porosity anode of solid oxide fuel cell
by: Wu, Y., et al.
Published: (2011)
by: Wu, Y., et al.
Published: (2011)
Effect of nickel content and preparation method on the performance of Ni-Al2O3 towards the applications in solid oxide fuel cells
by: Wang, W., et al.
Published: (2011)
by: Wang, W., et al.
Published: (2011)
Renewable acetic acid in combination with solid oxide fuel cells for sustainable clean electric power generation
by: Su, C., et al.
Published: (2013)
by: Su, C., et al.
Published: (2013)
Nickel zirconia cerate cermet for catalytic partial oxidation of ethanol in a solid oxide fuel cell system
by: Wang, Wei, et al.
Published: (2012)
by: Wang, Wei, et al.
Published: (2012)
Physically mixed LiLaNi-Al2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation
by: Wang, W., et al.
Published: (2011)
by: Wang, W., et al.
Published: (2011)
H2S poisoning effect and ways to improve sulfur tolerance of nickel cermet anodes operating on carbonaceous fuels
by: Chen, H., et al.
Published: (2016)
by: Chen, H., et al.
Published: (2016)
Microchanneled anode supports of solid oxide fuel cells
by: Dong, Dehua, et al.
Published: (2014)
by: Dong, Dehua, et al.
Published: (2014)
Electrolyte materials for intermediate-temperature solid oxide fuel cells
by: Shi, Huangang, et al.
Published: (2020)
by: Shi, Huangang, et al.
Published: (2020)
Lithium and lanthanum promoted Ni-Al2O3 as an active and highly coking resistant catalyst layer for solid-oxide fuel cells operating on methane
by: Wang, W., et al.
Published: (2011)
by: Wang, W., et al.
Published: (2011)
Rational Design of a Water-Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance
by: Song, Y., et al.
Published: (2017)
by: Song, Y., et al.
Published: (2017)
Improving single-chamber performance of an anode-supported SOFC by impregnating anode with active nickel catalyst
by: Zhang, C., et al.
Published: (2010)
by: Zhang, C., et al.
Published: (2010)
Effect of fabrication method on properties and performance of bimetallic Ni0.75Fe0.25 anode catalyst for solid oxide fuel cells
by: Wu, Y., et al.
Published: (2012)
by: Wu, Y., et al.
Published: (2012)
Core–shell structured Li0.33La0.56TiO3 perovskite as a highly efficient and sulfur-tolerant anode for solid-oxide fuel cells
by: Wang, Wei, et al.
Published: (2015)
by: Wang, Wei, et al.
Published: (2015)
Similar Items
-
Progress in Solid Oxide Fuel Cells with Nickel-Based Anodes Operating on Methane and Related Fuels
by: Wang, Wei, et al.
Published: (2013) -
Study on proton-conducting solid oxide fuel cells with a conventional nickel cermet anode operating on dimethyl ether
by: Liu, Y., et al.
Published: (2011) -
Reducing the operation temperature of a solid oxide fuel cell using a conventional nickel-based cermet anode on dimethyl ether fuel through internal partial oxidation
by: Su, C., et al.
Published: (2011) -
Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes
by: Wang, Wei, et al.
Published: (2013) -
Further performance enhancement of a DME-fueled solid oxide fuel cell by applying anode functional catalyst
by: Su, C., et al.
Published: (2012)