Anomalous heat transport in binary hard-sphere gases
© 2019 American Physical Society. Equilibrium and nonequilibrium molecular dynamics (MD) are used to investigate the thermal conductivity of binary hard-sphere fluids. It is found that the thermal conductivity of a mixture can not only lie outside the series and parallel bounds set by their pure com...
| Main Authors: | , , , , |
|---|---|
| Format: | Journal Article |
| Language: | English |
| Published: |
AMER PHYSICAL SOC
2019
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/77071 |
| _version_ | 1848763812786733056 |
|---|---|
| author | Moir, C. Lue, L. Gale, Julian Raiteri, Paolo Bannerman, M.N. |
| author_facet | Moir, C. Lue, L. Gale, Julian Raiteri, Paolo Bannerman, M.N. |
| author_sort | Moir, C. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | © 2019 American Physical Society. Equilibrium and nonequilibrium molecular dynamics (MD) are used to investigate the thermal conductivity of binary hard-sphere fluids. It is found that the thermal conductivity of a mixture can not only lie outside the series and parallel bounds set by their pure component values, but can lie beyond even the pure component fluid values. The MD simulations verify that revised Enskog theory can accurately predict nonequilibrium thermal conductivities at low densities and this theory is applied to explore the model parameter space. Only certain mass and size ratios are found to exhibit conductivity enhancements above the parallel bounds and dehancement below the series bounds. The anomalous dehancement is experimentally accessible in helium-hydrogen gas mixtures and a review of the literature confirms the existence of mixture thermal conductivity below the series bound and even below the pure fluid values, in accordance with the predictions of revised Enskog theory. The results reported here may reignite the debate in the nanofluid literature on the possible existence of anomalous thermal conductivities outside the series and parallel bounds as this Rapid Communication demonstrates they are a fundamental feature of even simple fluids. |
| first_indexed | 2025-11-14T11:09:25Z |
| format | Journal Article |
| id | curtin-20.500.11937-77071 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| language | English |
| last_indexed | 2025-11-14T11:09:25Z |
| publishDate | 2019 |
| publisher | AMER PHYSICAL SOC |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-770712019-12-03T08:23:09Z Anomalous heat transport in binary hard-sphere gases Moir, C. Lue, L. Gale, Julian Raiteri, Paolo Bannerman, M.N. Science & Technology Physical Sciences Physics, Fluids & Plasmas Physics, Mathematical Physics DIAMETER RATIO 0.4 THERMAL-CONDUCTIVITY IRREVERSIBLE-PROCESSES MIXTURES COEFFICIENTS NANOFLUIDS © 2019 American Physical Society. Equilibrium and nonequilibrium molecular dynamics (MD) are used to investigate the thermal conductivity of binary hard-sphere fluids. It is found that the thermal conductivity of a mixture can not only lie outside the series and parallel bounds set by their pure component values, but can lie beyond even the pure component fluid values. The MD simulations verify that revised Enskog theory can accurately predict nonequilibrium thermal conductivities at low densities and this theory is applied to explore the model parameter space. Only certain mass and size ratios are found to exhibit conductivity enhancements above the parallel bounds and dehancement below the series bounds. The anomalous dehancement is experimentally accessible in helium-hydrogen gas mixtures and a review of the literature confirms the existence of mixture thermal conductivity below the series bound and even below the pure fluid values, in accordance with the predictions of revised Enskog theory. The results reported here may reignite the debate in the nanofluid literature on the possible existence of anomalous thermal conductivities outside the series and parallel bounds as this Rapid Communication demonstrates they are a fundamental feature of even simple fluids. 2019 Journal Article http://hdl.handle.net/20.500.11937/77071 10.1103/PhysRevE.99.030102 English AMER PHYSICAL SOC fulltext |
| spellingShingle | Science & Technology Physical Sciences Physics, Fluids & Plasmas Physics, Mathematical Physics DIAMETER RATIO 0.4 THERMAL-CONDUCTIVITY IRREVERSIBLE-PROCESSES MIXTURES COEFFICIENTS NANOFLUIDS Moir, C. Lue, L. Gale, Julian Raiteri, Paolo Bannerman, M.N. Anomalous heat transport in binary hard-sphere gases |
| title | Anomalous heat transport in binary hard-sphere gases |
| title_full | Anomalous heat transport in binary hard-sphere gases |
| title_fullStr | Anomalous heat transport in binary hard-sphere gases |
| title_full_unstemmed | Anomalous heat transport in binary hard-sphere gases |
| title_short | Anomalous heat transport in binary hard-sphere gases |
| title_sort | anomalous heat transport in binary hard-sphere gases |
| topic | Science & Technology Physical Sciences Physics, Fluids & Plasmas Physics, Mathematical Physics DIAMETER RATIO 0.4 THERMAL-CONDUCTIVITY IRREVERSIBLE-PROCESSES MIXTURES COEFFICIENTS NANOFLUIDS |
| url | http://hdl.handle.net/20.500.11937/77071 |