Prospective Memory Performance in Simulated Air Traffic Control: Robust to Interruptions but Impaired by Retention Interval
OBJECTIVE: To examine the effects of interruptions and retention interval on prospective memory for deferred tasks in simulated air traffic control. BACKGROUND: In many safety-critical environments, operators need to remember to perform a deferred task, which requires prospective memory. Laboratory...
| Main Authors: | , , , , |
|---|---|
| Format: | Journal Article |
| Language: | English |
| Published: |
2019
|
| Subjects: | |
| Online Access: | http://purl.org/au-research/grants/arc/DP12010311 http://hdl.handle.net/20.500.11937/76662 |
| Summary: | OBJECTIVE: To examine the effects of interruptions and retention interval on prospective memory for deferred tasks in simulated air traffic control. BACKGROUND: In many safety-critical environments, operators need to remember to perform a deferred task, which requires prospective memory. Laboratory experiments suggest that extended prospective memory retention intervals, and interruptions in those retention intervals, could impair prospective memory performance. METHOD: Participants managed a simulated air traffic control sector. Participants were sometimes instructed to perform a deferred handoff task, requiring them to deviate from a routine procedure. We manipulated whether an interruption occurred during the prospective memory retention interval or not, the length of the retention interval (37-117 s), and the temporal proximity of the interruption to deferred task encoding and execution. We also measured performance on ongoing tasks. RESULTS: Increasing retention intervals (37-117 s) decreased the probability of remembering to perform the deferred task. Costs to ongoing conflict detection accuracy and routine handoff speed were observed when a prospective memory intention had to be maintained. Interruptions did not affect individuals' speed or accuracy on the deferred task. CONCLUSION: Longer retention intervals increase risk of prospective memory error and of ongoing task performance being impaired by cognitive load; however, prospective memory can be robust to effects of interruptions when the task environment provides cuing and offloading. APPLICATION: To support operators in performing complex and dynamic tasks, prospective memory demands should be reduced, and the retention interval of deferred tasks should be kept as short as possible. |
|---|