Forward Modelling and Inversion of the Ultrasonic Wave Propagation Through a Homogeneous and Porous Rock
The aim of my work is to estimate viscoelastic parameters of rock samples from waveforms of ultrasonic waves propagating through these samples. To this end, I develop an automated Python modules in Finite Element Modelling software Abaqus, and tailored it specifically for a controlled transmission e...
| Main Author: | |
|---|---|
| Format: | Thesis |
| Published: |
Curtin University
2019
|
| Online Access: | http://hdl.handle.net/20.500.11937/76000 |
| Summary: | The aim of my work is to estimate viscoelastic parameters of rock samples from waveforms of ultrasonic waves propagating through these samples. To this end, I develop an automated Python modules in Finite Element Modelling software Abaqus, and tailored it specifically for a controlled transmission experiment using ultrasonic source and receiver. The approach is verified using test Aluminium samples, and then applied to real rocks to estimate ultrasonic attenuation using Prony formulation of viscoelasticity. |
|---|