Exploiting compressive system identification for multiple line outage detection in smart grids

© 2018 IEEE Due to system complexity and structural variations, real time power line outage detection (POD) and localization is a critical and challenging monitoring goal for modern smart grid (SG). Online monitoring of power lines status plays a major role in system-wide cascading blackout preventi...

Full description

Bibliographic Details
Main Authors: Babakmehr, M., Harirchi, F., Al Durra, A., Muyeen, S.M., Simões, M.
Format: Conference Paper
Published: 2018
Online Access:http://hdl.handle.net/20.500.11937/74893
Description
Summary:© 2018 IEEE Due to system complexity and structural variations, real time power line outage detection (POD) and localization is a critical and challenging monitoring goal for modern smart grid (SG). Online monitoring of power lines status plays a major role in system-wide cascading blackout prevention. In this work, we aim to address the multiple POD problems by exploiting the compressive system identification (CSI) - a time efficient approach in complex network analysis. We consider a power network (PN) as a single graph and the mathematical formulation of POD is initialized using the DC power-flow model and graph theory concepts. The POD sparse recovery problem (POD-SRP) reported earlier is improved and generalized in case of large-scale multiple outages. The technical challenges from sparse recovery perspective are addressed through developing new SRP solvers. Moreover, a new sparse-based mathematical formulation for POD is termed as 'Binary-POD-SRP' to specifically address the signal dynamic range issue. Finally, using the IEEE standard test-beds, it is discussed how the inherent challenges within large-scale multiple-outages can be solved by applying these new techniques and formulations.