Enhancing the cycle life of Li-S batteries by designing a free-standing cathode with excellent flexible, conductive, and catalytic properties
Poor electrical conductivity of sulfur, sluggish redox kinetics, dissolution of intermediate polysulfides, and expansion in volume upon cycling are the main drawbacks that hamper the practical application of Li-S batteries. By taking advantages of the high conductivity and favorable catalytic activi...
| Main Authors: | Lu, Q., Sun, Y., Liao, K., Zou, X., Hamada, I., Zhou, W., Ni, M., Shao, Zongping |
|---|---|
| Format: | Journal Article |
| Published: |
Pergamon
2019
|
| Online Access: | http://hdl.handle.net/20.500.11937/74632 |
Similar Items
Flexible, Flame-Resistant, and Dendrite-Impermeable Gel-Polymer Electrolyte for Li�O2/Air Batteries Workable Under Hurdle Conditions
by: Zou, X., et al.
Published: (2018)
by: Zou, X., et al.
Published: (2018)
Dodecylamine-Induced Synthesis of a Nitrogen-Doped Carbon Comb for Advanced Lithium-Sulfur Battery Cathodes
by: Lu, Q., et al.
Published: (2018)
by: Lu, Q., et al.
Published: (2018)
Flexible Zn- and Li-air batteries: Recent advances, challenges, and future perspectives
by: Tan, P., et al.
Published: (2017)
by: Tan, P., et al.
Published: (2017)
Advances in modeling and simulation of Li–air batteries
by: Tan, P., et al.
Published: (2017)
by: Tan, P., et al.
Published: (2017)
Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries
by: Deng, X., et al.
Published: (2016)
by: Deng, X., et al.
Published: (2016)
Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries
by: Gao, X., et al.
Published: (2015)
by: Gao, X., et al.
Published: (2015)
Preparation of long-term cycling stable ni-rich concentration–gradient NCMA cathode materials for li-ion batteries
by: Jeyakumar, Juliya, et al.
Published: (2023)
by: Jeyakumar, Juliya, et al.
Published: (2023)
Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries
by: Zhao, B., et al.
Published: (2012)
by: Zhao, B., et al.
Published: (2012)
Optimal synthesis and new understanding of P2-type Na2/3Mn1/2Fe1/4Co1/4O2 as an advanced cathode material in sodium-ion batteries with improved cycle stability
by: Chu, S., et al.
Published: (2017)
by: Chu, S., et al.
Published: (2017)
An aurivillius oxide based cathode with excellent CO2 tolerance for intermediate-temperature solid oxide fuel cells
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
A cobalt and nickel co-modified layered P2-Na2/3Mn1/2Fe1/2O2 with excellent cycle stability for high-energy density sodium-ion batteries
by: Chu, S., et al.
Published: (2019)
by: Chu, S., et al.
Published: (2019)
Self-adhesive Co3O4/expanded graphite paper as high-performance flexible anode for Li-ion batteries
by: Zhao, Y., et al.
Published: (2015)
by: Zhao, Y., et al.
Published: (2015)
Sulfur@metal cotton with superior cycling stability as cathode materials for rechargeable lithium–sulfur batteries
by: Zhang, J., et al.
Published: (2015)
by: Zhang, J., et al.
Published: (2015)
Template GNL-assisted synthesis of porous Li1.2Mn0.534Ni0.133Co0.133O2: towards high performance cathodes for lithium ion batteries
by: Huang, Y., et al.
Published: (2015)
by: Huang, Y., et al.
Published: (2015)
Carbon nanotube and graphene nanosheet co-modified LiFePO4nanoplate composite cathode material by a facile polyol process
by: Wu, G., et al.
Published: (2013)
by: Wu, G., et al.
Published: (2013)
The solid-state chelation synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium-ion batteries
by: Jiang, X., et al.
Published: (2015)
by: Jiang, X., et al.
Published: (2015)
Mesoporous and Nanostructured TiO2 layer with Ultra-High Loading on Nitrogen-Doped Carbon Foams as Flexible and Free-Standing Electrodes for Lithium-Ion Batteries
by: Chu, S., et al.
Published: (2016)
by: Chu, S., et al.
Published: (2016)
A new cathode material LiCu2O2 for secondary lithium batteries
by: Jacob, M. Milburn Ebenezer, et al.
Published: (2000)
by: Jacob, M. Milburn Ebenezer, et al.
Published: (2000)
Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
A Green Route to a Na2FePO4F-Based Cathode for Sodium Ion Batteries of High Rate and Long Cycling Life
by: Deng, X., et al.
Published: (2017)
by: Deng, X., et al.
Published: (2017)
Two-Step Fabrication of Li4Ti5O12-Coated Carbon Nanofibers as a Flexible Film Electrode for High-Power Lithium-Ion Batteries
by: Zhang, Z., et al.
Published: (2017)
by: Zhang, Z., et al.
Published: (2017)
Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance
by: Wang, G., et al.
Published: (2010)
by: Wang, G., et al.
Published: (2010)
Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery
by: Yuan, T., et al.
Published: (2009)
by: Yuan, T., et al.
Published: (2009)
Soft-combustion synthesis of a new cathode-active material, LiVWO6, for lithium-ion batteries
by: Prabaharan, S.R.S., et al.
Published: (2001)
by: Prabaharan, S.R.S., et al.
Published: (2001)
A ternary sulphonium composite Cu3BiS3/S as cathode materials for lithium–sulfur batteries
by: Gao, X., et al.
Published: (2016)
by: Gao, X., et al.
Published: (2016)
Cation/Anion substitution into spinel LiMn2O4 cathode material for Li-ion battery application: a review of recent progress
by: Zahoor, Ahmed, et al.
Published: (2021)
by: Zahoor, Ahmed, et al.
Published: (2021)
LiNi0.29Co0.33Mn0.38O2 polyhedrons with reduced cation mixing as a high-performance cathode material for Li-ion batteries synthesized via a combined co-precipitation and molten salt heating technique
by: Jiang, X., et al.
Published: (2017)
by: Jiang, X., et al.
Published: (2017)
Self-Recovery Chemistry and Cobalt-Catalyzed Electrochemical Deposition of Cathode for Boosting Performance of Aqueous Zinc-Ion Batteries
by: Zhong, Yijun, et al.
Published: (2020)
by: Zhong, Yijun, et al.
Published: (2020)
Synthesis and structural characterization of modified LiMnPO4 cathode materials for lithium ion batteries / Rajammal Karuppiah
by: Rajammal, Karuppiah
Published: (2016)
by: Rajammal, Karuppiah
Published: (2016)
Soft-combustion (wet-chemical) synthesis of a new 4-V class cathode-active material, LiVMoO6, for Li-ion batteries
by: Michael, M. S., et al.
Published: (2000)
by: Michael, M. S., et al.
Published: (2000)
Ballmilling-assisted synthesis and electrochemical performance of LiFePO4/C for lithium-ion battery adopting citric acid as carbon precursor
by: Zhang, D., et al.
Published: (2009)
by: Zhang, D., et al.
Published: (2009)
Advanced Cathodes for Solid Oxide Fuel Cells
by: Zhou, W., et al.
Published: (2012)
by: Zhou, W., et al.
Published: (2012)
Modified template synthesis and electrochemical performance of a Co3O4/mesoporous cathode for lithium–oxygen batteries
by: Wang, S., et al.
Published: (2015)
by: Wang, S., et al.
Published: (2015)
Sulfur-nickel foam as cathode materials for lithium-sulfur batteries
by: Cheng, J., et al.
Published: (2015)
by: Cheng, J., et al.
Published: (2015)
Free-standing nitrogen doped V-O-C nanofiber film as promising electrode for flexible lithium-ionbatteries
by: Chen, X., et al.
Published: (2014)
by: Chen, X., et al.
Published: (2014)
Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries
by: Zhang, M., et al.
Published: (2014)
by: Zhang, M., et al.
Published: (2014)
Spinel LiMn2O4 cathode and carbonaceous anode material for electrochemical energy storage lithium-ion battery
by: Zahoor, Ahmed
Published: (2021)
by: Zahoor, Ahmed
Published: (2021)
Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance
by: Cai, R., et al.
Published: (2010)
by: Cai, R., et al.
Published: (2010)
Trapping sulfur in hierarchically porous, hollow indented carbon spheres: A high-performance cathode for lithium-sulfur batteries
by: Zhong, Y., et al.
Published: (2016)
by: Zhong, Y., et al.
Published: (2016)
Mechanical properties of Li-Sn alloys for Li-ion battery anodes: A first-principles perspective
by: Zhang, P., et al.
Published: (2016)
by: Zhang, P., et al.
Published: (2016)
Similar Items
-
Flexible, Flame-Resistant, and Dendrite-Impermeable Gel-Polymer Electrolyte for Li�O2/Air Batteries Workable Under Hurdle Conditions
by: Zou, X., et al.
Published: (2018) -
Dodecylamine-Induced Synthesis of a Nitrogen-Doped Carbon Comb for Advanced Lithium-Sulfur Battery Cathodes
by: Lu, Q., et al.
Published: (2018) -
Flexible Zn- and Li-air batteries: Recent advances, challenges, and future perspectives
by: Tan, P., et al.
Published: (2017) -
Advances in modeling and simulation of Li–air batteries
by: Tan, P., et al.
Published: (2017) -
Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries
by: Deng, X., et al.
Published: (2016)