Radio Galaxy Zoo: CLARAN - A deep learning classifier for radio morphologies

The upcoming next-generation large area radio continuum surveys can expect tens of millions of radio sources, rendering the traditional method for radio morphology classification through visual inspection unfeasible.We present CLARAN-Classifying Radio sources Automatically with Neural networks - a p...

Full description

Bibliographic Details
Main Authors: Wu, C., Wong, O., Rudnick, L., Shabala, S., Alger, M., Banfield, J., Ong, C., White, Sarah, Garon, A., Norris, R., Andernach, H., Tate, J., Lukic, V., Tang, H., Schawinski, K., Diakogiannis, F.
Format: Journal Article
Published: Oxford University Press 2019
Online Access:http://hdl.handle.net/20.500.11937/73873
_version_ 1848763121097768960
author Wu, C.
Wong, O.
Rudnick, L.
Shabala, S.
Alger, M.
Banfield, J.
Ong, C.
White, Sarah
Garon, A.
Norris, R.
Andernach, H.
Tate, J.
Lukic, V.
Tang, H.
Schawinski, K.
Diakogiannis, F.
author_facet Wu, C.
Wong, O.
Rudnick, L.
Shabala, S.
Alger, M.
Banfield, J.
Ong, C.
White, Sarah
Garon, A.
Norris, R.
Andernach, H.
Tate, J.
Lukic, V.
Tang, H.
Schawinski, K.
Diakogiannis, F.
author_sort Wu, C.
building Curtin Institutional Repository
collection Online Access
description The upcoming next-generation large area radio continuum surveys can expect tens of millions of radio sources, rendering the traditional method for radio morphology classification through visual inspection unfeasible.We present CLARAN-Classifying Radio sources Automatically with Neural networks - a proof-of-concept radio source morphology classifier based upon the Faster Region-based Convolutional Neutral Networks method. Specifically, we train and test CLARAN on the FIRST and WISE (Wide-field Infrared Survey Explorer) images from the Radio Galaxy Zoo Data Release 1 catalogue. CLARAN provides end users with automated identification of radio source morphology classifications from a simple input of a radio image and a counterpart infrared image of the same region. CLARAN is the first open-source, endto- end radio source morphology classifier that is capable of locating and associating discrete and extended components of radio sources in a fast (<200 ms per image) and accurate (=90 per cent) fashion. Future work will improve CLARAN's relatively lower success rates in dealing with multisource fields and will enable CLARAN to identify sources on much larger fields without loss in classification accuracy.
first_indexed 2025-11-14T10:58:25Z
format Journal Article
id curtin-20.500.11937-73873
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T10:58:25Z
publishDate 2019
publisher Oxford University Press
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-738732019-03-13T03:26:36Z Radio Galaxy Zoo: CLARAN - A deep learning classifier for radio morphologies Wu, C. Wong, O. Rudnick, L. Shabala, S. Alger, M. Banfield, J. Ong, C. White, Sarah Garon, A. Norris, R. Andernach, H. Tate, J. Lukic, V. Tang, H. Schawinski, K. Diakogiannis, F. The upcoming next-generation large area radio continuum surveys can expect tens of millions of radio sources, rendering the traditional method for radio morphology classification through visual inspection unfeasible.We present CLARAN-Classifying Radio sources Automatically with Neural networks - a proof-of-concept radio source morphology classifier based upon the Faster Region-based Convolutional Neutral Networks method. Specifically, we train and test CLARAN on the FIRST and WISE (Wide-field Infrared Survey Explorer) images from the Radio Galaxy Zoo Data Release 1 catalogue. CLARAN provides end users with automated identification of radio source morphology classifications from a simple input of a radio image and a counterpart infrared image of the same region. CLARAN is the first open-source, endto- end radio source morphology classifier that is capable of locating and associating discrete and extended components of radio sources in a fast (<200 ms per image) and accurate (=90 per cent) fashion. Future work will improve CLARAN's relatively lower success rates in dealing with multisource fields and will enable CLARAN to identify sources on much larger fields without loss in classification accuracy. 2019 Journal Article http://hdl.handle.net/20.500.11937/73873 10.1093/mnras/sty2646 Oxford University Press fulltext
spellingShingle Wu, C.
Wong, O.
Rudnick, L.
Shabala, S.
Alger, M.
Banfield, J.
Ong, C.
White, Sarah
Garon, A.
Norris, R.
Andernach, H.
Tate, J.
Lukic, V.
Tang, H.
Schawinski, K.
Diakogiannis, F.
Radio Galaxy Zoo: CLARAN - A deep learning classifier for radio morphologies
title Radio Galaxy Zoo: CLARAN - A deep learning classifier for radio morphologies
title_full Radio Galaxy Zoo: CLARAN - A deep learning classifier for radio morphologies
title_fullStr Radio Galaxy Zoo: CLARAN - A deep learning classifier for radio morphologies
title_full_unstemmed Radio Galaxy Zoo: CLARAN - A deep learning classifier for radio morphologies
title_short Radio Galaxy Zoo: CLARAN - A deep learning classifier for radio morphologies
title_sort radio galaxy zoo: claran - a deep learning classifier for radio morphologies
url http://hdl.handle.net/20.500.11937/73873