Performance Evaluation for Large-Scale Multi-Target Tracking Algorithms

© 2018 ISIF The traditional method of applying the optimal subpattern assignment (OSPA) metric cannot fully evaluate multitarget tracking performance, as it does not account for phenomena such as track label switching, and track fragmentation. The OSPA(2)has been proposed as a technique for applying...

Full description

Bibliographic Details
Main Authors: Beard, Michael, Vo, Ba Tuong, Vo, Ba-Ngu
Format: Conference Paper
Published: 2018
Online Access:http://hdl.handle.net/20.500.11937/73225
Description
Summary:© 2018 ISIF The traditional method of applying the optimal subpattern assignment (OSPA) metric cannot fully evaluate multitarget tracking performance, as it does not account for phenomena such as track label switching, and track fragmentation. The OSPA(2)has been proposed as a technique for applying the OSPA distance in a way that captures these effects, while retaining the properties of a true metric. In this paper, we demonstrate the behaviour of the OSPA(2)on some numerical examples, discuss some of its advantages and limitations, and show that it is capable of being applied to performance evaluation of large-scale scenarios in the order of a thousand targets.