Recent progress on sodium ion batteries: Potential high-performance anodes
Due to massively growing demand arising from energy storage systems, sodium ion batteries (SIBs) have been recognized as the most attractive alternative to the current commercialized lithium ion batteries (LIBs) owing to the wide availability and accessibility of sodium. Unfortunately, the low energ...
| Main Authors: | Li, L., Zheng, Y., Zhang, S., Yang, J., Shao, Zongping, Guo, Z. |
|---|---|
| Format: | Journal Article |
| Published: |
Royal Society of Chemistry
2018
|
| Online Access: | http://hdl.handle.net/20.500.11937/73104 |
Similar Items
State-of-the-art review on electrolytes for sodium-ion batteries: Potential recent progress and technical challenges
by: Aslfattahia, Navid, et al.
Published: (2023)
by: Aslfattahia, Navid, et al.
Published: (2023)
A strongly coupled CoS2/ reduced graphene oxide nanostructure as an anode material for efficient sodium-ion batteries
by: Xie, K., et al.
Published: (2017)
by: Xie, K., et al.
Published: (2017)
Optimization of SnO2 Nanoparticles Confined in a Carbon Matrix towards Applications as High‐Capacity Anodes in Sodium‐Ion Batteries
by: Wei, S., et al.
Published: (2018)
by: Wei, S., et al.
Published: (2018)
Recent progress in metal–organic frameworks for lithium–sulfur batteries
by: Zhong, Y., et al.
Published: (2018)
by: Zhong, Y., et al.
Published: (2018)
Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries
by: Deng, X., et al.
Published: (2016)
by: Deng, X., et al.
Published: (2016)
Appraisal of carbon-coated Li4Ti5O12 acanthospheres from optimized two-step hydrothermal synthesis as a superior anode for sodium-ion batteries
by: Sha, Y., et al.
Published: (2017)
by: Sha, Y., et al.
Published: (2017)
High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries
by: Lin, Q., et al.
Published: (2016)
by: Lin, Q., et al.
Published: (2016)
Self-adhesive Co3O4/expanded graphite paper as high-performance flexible anode for Li-ion batteries
by: Zhao, Y., et al.
Published: (2015)
by: Zhao, Y., et al.
Published: (2015)
Tuning the Electronic Properties of 2H-MoS2/C Anode Materials for Sodium-Ion Batteries via Zn Doping
by: Zhang, P., et al.
Published: (2023)
by: Zhang, P., et al.
Published: (2023)
Morphology-dependent performance of Zn2GeO4 as a high-performance anode material for rechargeable lithium ion batteries
by: Feng, Y., et al.
Published: (2015)
by: Feng, Y., et al.
Published: (2015)
Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries
by: Zhang, M., et al.
Published: (2014)
by: Zhang, M., et al.
Published: (2014)
Micro-/nano-structured hybrid of exfoliated graphite and Co3O4 nanoparticles as high-performance anode material for Li-ion batteries
by: Zhao, Y., et al.
Published: (2016)
by: Zhao, Y., et al.
Published: (2016)
Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries
by: Wang, S., et al.
Published: (2017)
by: Wang, S., et al.
Published: (2017)
Carbon based anode materials for Li-ion battery application: a review of recent development
by: Zahoor, Ahmed, et al.
Published: (2021)
by: Zahoor, Ahmed, et al.
Published: (2021)
In situ electrochemical creation of cobalt oxide nanosheets with favorable performance as a high tap density anode material for lithium-ion batteries
by: Lin, Q., et al.
Published: (2015)
by: Lin, Q., et al.
Published: (2015)
Structure and defect strategy towards high-performance copper niobate as anode for Li-ion batteries
by: Su, M., et al.
Published: (2023)
by: Su, M., et al.
Published: (2023)
Mesoporous carbon with large pores as anode for Na-ion batteries
by: Liu, J., et al.
Published: (2014)
by: Liu, J., et al.
Published: (2014)
Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
Impact of CO2 activation on the structure, composition, and performance of Sb/C nanohybrid lithium/sodium-ion battery anodes
by: Liang, Suzhe, et al.
Published: (2021)
by: Liang, Suzhe, et al.
Published: (2021)
Facile spray-drying/pyrolysis synthesis of intertwined SiO@CNFs&G composites as superior anode materials for Li-ion batteries
by: Hou, X., et al.
Published: (2014)
by: Hou, X., et al.
Published: (2014)
Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance
by: Cai, R., et al.
Published: (2010)
by: Cai, R., et al.
Published: (2010)
Facile synthesis of a MoO2-Mo2C-C composite and its application as favorable anode material for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
Three Strongly Coupled Allotropes in a Functionalized Porous All-Carbon Nanocomposite as a Superior Anode for Lithium-Ion Batteries
by: Deng, X., et al.
Published: (2016)
by: Deng, X., et al.
Published: (2016)
A hierarchical Zn2Mo3O8 nanodots–porous carbon composite as a superior anode for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
A kinetic model for diffusion and chemical reaction of silicon anode lithiation in lithium ion batteries
by: Xie, Z., et al.
Published: (2016)
by: Xie, Z., et al.
Published: (2016)
Mechanical properties of Li-Sn alloys for Li-ion battery anodes: A first-principles perspective
by: Zhang, P., et al.
Published: (2016)
by: Zhang, P., et al.
Published: (2016)
One-pot combustion synthesis of Li3VO4-Li4Ti5O12 nanocomposite as anode material of lithium-ion batteries with improved performance
by: Sha, Y., et al.
Published: (2016)
by: Sha, Y., et al.
Published: (2016)
Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis
by: Gu, P., et al.
Published: (2010)
by: Gu, P., et al.
Published: (2010)
Facile spray-drying/pyrolysis synthesis of core-shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries
by: Li, M., et al.
Published: (2014)
by: Li, M., et al.
Published: (2014)
Self-assembled mesoporous TiO2/carbon nanotube composite with a three-dimensional conducting nanonetwork as a high-rate anode material for lithium-ion battery
by: Wang, J., et al.
Published: (2014)
by: Wang, J., et al.
Published: (2014)
Electrospun ternary composite metal oxide fibers as an anode for lithium-ion batteries
by: Ling, Jin Kiong, et al.
Published: (2022)
by: Ling, Jin Kiong, et al.
Published: (2022)
A Green Route to a Na2FePO4F-Based Cathode for Sodium Ion Batteries of High Rate and Long Cycling Life
by: Deng, X., et al.
Published: (2017)
by: Deng, X., et al.
Published: (2017)
First-Principles Study on the Mechanical Properties of Lithiated Sn Anode Materials for Li-Ion Batteries
by: Zhang, Panpan
Published: (2019)
by: Zhang, Panpan
Published: (2019)
Anisotropic mechanical properties of Si anodes in a lithiation process of lithium-ion batteries
by: Wang, D., et al.
Published: (2018)
by: Wang, D., et al.
Published: (2018)
A twins-structural Sn@C core–shell composite as anode materials for lithium-ion batteries
by: Wang, Y., et al.
Published: (2016)
by: Wang, Y., et al.
Published: (2016)
High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries
by: Hou, X., et al.
Published: (2015)
by: Hou, X., et al.
Published: (2015)
Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery
by: Cai, R., et al.
Published: (2011)
by: Cai, R., et al.
Published: (2011)
Corncob-shaped ZnFe2O4/C nanostructures for improved anode rate and cycle performance in lithium-ion batteries
by: Mao, J., et al.
Published: (2015)
by: Mao, J., et al.
Published: (2015)
Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance
by: Liu, H., et al.
Published: (2011)
by: Liu, H., et al.
Published: (2011)
Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries
by: Yao, L., et al.
Published: (2014)
by: Yao, L., et al.
Published: (2014)
Similar Items
-
State-of-the-art review on electrolytes for sodium-ion batteries: Potential recent progress and technical challenges
by: Aslfattahia, Navid, et al.
Published: (2023) -
A strongly coupled CoS2/ reduced graphene oxide nanostructure as an anode material for efficient sodium-ion batteries
by: Xie, K., et al.
Published: (2017) -
Optimization of SnO2 Nanoparticles Confined in a Carbon Matrix towards Applications as High‐Capacity Anodes in Sodium‐Ion Batteries
by: Wei, S., et al.
Published: (2018) -
Recent progress in metal–organic frameworks for lithium–sulfur batteries
by: Zhong, Y., et al.
Published: (2018) -
Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries
by: Deng, X., et al.
Published: (2016)