The Dragonfly Galaxy: II. ALMA unveils a triple merger and gas exchange in a hyper-luminous radio galaxy at z = 2

The Dragonfly Galaxy (MRC 0152-209), at redshift z ~  2, is one of the most vigorously star-forming radio galaxies in the Universe. What triggered its activity? We present ALMA Cycle 2 observations of cold molecular CO(6−5) gas and dust, which reveal that this is likely a gas-rich triple merger. It...

Full description

Bibliographic Details
Main Authors: Emonts, B., De Breuck, C., Lehnert, M., Vernet, J., Gullberg, B., Villar-Martin, M., Nesvadba, N., Drouart, G., Ivison, R., Seymour, Nick, Wylezalek, D., Barthel, P.
Format: Journal Article
Published: 2015
Online Access:http://hdl.handle.net/20.500.11937/7309
_version_ 1848745331972374528
author Emonts, B.
De Breuck, C.
Lehnert, M.
Vernet, J.
Gullberg, B.
Villar-Martin, M.
Nesvadba, N.
Drouart, G.
Ivison, R.
Seymour, Nick
Wylezalek, D.
Barthel, P.
author_facet Emonts, B.
De Breuck, C.
Lehnert, M.
Vernet, J.
Gullberg, B.
Villar-Martin, M.
Nesvadba, N.
Drouart, G.
Ivison, R.
Seymour, Nick
Wylezalek, D.
Barthel, P.
author_sort Emonts, B.
building Curtin Institutional Repository
collection Online Access
description The Dragonfly Galaxy (MRC 0152-209), at redshift z ~  2, is one of the most vigorously star-forming radio galaxies in the Universe. What triggered its activity? We present ALMA Cycle 2 observations of cold molecular CO(6−5) gas and dust, which reveal that this is likely a gas-rich triple merger. It consists of a close double nucleus (separation ~4 kpc) and a weak CO-emitter at ~10  kpc distance, all of which have counterparts in HST/NICMOS imagery. The hyper-luminous starburst and powerful radio-AGN were triggered at this precoalescent stage of the merger. The CO(6−5) traces dense molecular gas in the central region, and complements existing CO(1−0) data, which reveal more widespread tidal debris of cold gas. We also find ~1010 M☉ of molecular gas with enhanced excitation at the highest velocities. At least 20−50% of this high-excitation, high-velocity gas shows kinematics that suggests it is being displaced and redistributed within the merger, although with line-of-sight velocities of |v| < 500 km s-1, this gas will probably not escape the system. The processes that drive the redistribution of cold gas are likely related to either the gravitational interaction between two kpc-scale discs, or starburst/AGN-driven outflows. We estimate that the rate at which the molecular gas is redistributed is at least [Ṁentity!#x2009!]~ 1200 ± 500 M☉ yr-1, and could perhaps even approach the star formation rate of ~3000 ± 800 M☉ yr-1. The fact that the gas depletion and gas redistribution timescales are similar implies that dynamical processes can be important in the evolution of massive high-z galaxies.
first_indexed 2025-11-14T06:15:40Z
format Journal Article
id curtin-20.500.11937-7309
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T06:15:40Z
publishDate 2015
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-73092017-09-13T14:37:01Z The Dragonfly Galaxy: II. ALMA unveils a triple merger and gas exchange in a hyper-luminous radio galaxy at z = 2 Emonts, B. De Breuck, C. Lehnert, M. Vernet, J. Gullberg, B. Villar-Martin, M. Nesvadba, N. Drouart, G. Ivison, R. Seymour, Nick Wylezalek, D. Barthel, P. The Dragonfly Galaxy (MRC 0152-209), at redshift z ~  2, is one of the most vigorously star-forming radio galaxies in the Universe. What triggered its activity? We present ALMA Cycle 2 observations of cold molecular CO(6−5) gas and dust, which reveal that this is likely a gas-rich triple merger. It consists of a close double nucleus (separation ~4 kpc) and a weak CO-emitter at ~10  kpc distance, all of which have counterparts in HST/NICMOS imagery. The hyper-luminous starburst and powerful radio-AGN were triggered at this precoalescent stage of the merger. The CO(6−5) traces dense molecular gas in the central region, and complements existing CO(1−0) data, which reveal more widespread tidal debris of cold gas. We also find ~1010 M☉ of molecular gas with enhanced excitation at the highest velocities. At least 20−50% of this high-excitation, high-velocity gas shows kinematics that suggests it is being displaced and redistributed within the merger, although with line-of-sight velocities of |v| < 500 km s-1, this gas will probably not escape the system. The processes that drive the redistribution of cold gas are likely related to either the gravitational interaction between two kpc-scale discs, or starburst/AGN-driven outflows. We estimate that the rate at which the molecular gas is redistributed is at least [Ṁentity!#x2009!]~ 1200 ± 500 M☉ yr-1, and could perhaps even approach the star formation rate of ~3000 ± 800 M☉ yr-1. The fact that the gas depletion and gas redistribution timescales are similar implies that dynamical processes can be important in the evolution of massive high-z galaxies. 2015 Journal Article http://hdl.handle.net/20.500.11937/7309 10.1051/0004-6361/201526090 fulltext
spellingShingle Emonts, B.
De Breuck, C.
Lehnert, M.
Vernet, J.
Gullberg, B.
Villar-Martin, M.
Nesvadba, N.
Drouart, G.
Ivison, R.
Seymour, Nick
Wylezalek, D.
Barthel, P.
The Dragonfly Galaxy: II. ALMA unveils a triple merger and gas exchange in a hyper-luminous radio galaxy at z = 2
title The Dragonfly Galaxy: II. ALMA unveils a triple merger and gas exchange in a hyper-luminous radio galaxy at z = 2
title_full The Dragonfly Galaxy: II. ALMA unveils a triple merger and gas exchange in a hyper-luminous radio galaxy at z = 2
title_fullStr The Dragonfly Galaxy: II. ALMA unveils a triple merger and gas exchange in a hyper-luminous radio galaxy at z = 2
title_full_unstemmed The Dragonfly Galaxy: II. ALMA unveils a triple merger and gas exchange in a hyper-luminous radio galaxy at z = 2
title_short The Dragonfly Galaxy: II. ALMA unveils a triple merger and gas exchange in a hyper-luminous radio galaxy at z = 2
title_sort dragonfly galaxy: ii. alma unveils a triple merger and gas exchange in a hyper-luminous radio galaxy at z = 2
url http://hdl.handle.net/20.500.11937/7309