Novel sources of resistance to septoria nodorum blotch in the Vavilov wheat collection identified by GWAS
| Main Authors: | Phan, H., Rybak, K., Bertazzoni, S., Furuki, E., Dinglasan, E., Hickey, L., Oliver, R., Tan, Kar-Chun |
|---|---|
| Format: | Conference Paper |
| Published: |
AMER PHYTOPATHOLOGICAL SOC
2018
|
| Online Access: | http://hdl.handle.net/20.500.11937/72968 |
Similar Items
Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies
by: Phan, H., et al.
Published: (2018)
by: Phan, H., et al.
Published: (2018)
GWAS analysis reveals distinct pathogenicity profiles of Australian Parastagonospora nodorum isolates and identification of marker-trait-associations to septoria nodorum blotch
by: Phan, Huyen, et al.
Published: (2021)
by: Phan, Huyen, et al.
Published: (2021)
Genome-wide association mapping of resistance to septoria nodorum leaf blotch in a nordic spring wheat collection
by: Ruud, A.K., et al.
Published: (2019)
by: Ruud, A.K., et al.
Published: (2019)
Low Amplitude Boom-and-Bust Cycles Define the Septoria Nodorum Blotch Interaction
by: Phan, Huyen T. T., et al.
Published: (2020)
by: Phan, Huyen T. T., et al.
Published: (2020)
Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
Septoria nodorum blotch of wheat: disease management and resistance breeding in the face of shifting disease dynamics and a changing environment.
by: Downie, Rowena Cathryn, et al.
Published: (2020)
by: Downie, Rowena Cathryn, et al.
Published: (2020)
Vavilov wheat accessions provide useful sources of resistance to tan spot (syn. yellow spot) of wheat
by: Dinglasan, E., et al.
Published: (2018)
by: Dinglasan, E., et al.
Published: (2018)
Identification and cross-validation of genetic loci conferring resistance to Septoria nodorum blotch using a German multi-founder winter wheat population
by: Lin, Min, et al.
Published: (2020)
by: Lin, Min, et al.
Published: (2020)
Mapping and characterisation of resistance to Septoria tritici blotch in winter wheat
by: Seed, Patrick
Published: (2023)
by: Seed, Patrick
Published: (2023)
Understanding the role of photoprotection in
disease resistance to Septoria Tritici Blotch in wheat
by: Angelopoulou, Dimitra
Published: (2022)
by: Angelopoulou, Dimitra
Published: (2022)
Understanding the molecular basis of disease resistance
against Septoria Tritici Blotch in wheat
by: Stephens, Christopher
Published: (2022)
by: Stephens, Christopher
Published: (2022)
Sensitivity to three Parastagonospora nodorum necrotrophic effectors in current Australian wheat cultivars and the presence of further fungal effectors
by: Tan, Kar-Chun, et al.
Published: (2013)
by: Tan, Kar-Chun, et al.
Published: (2013)
Characterisation of major gene (Stb)-mediated resistance to Septoria tritici blotch disease in wheat
by: Tidd, Henry James
Published: (2024)
by: Tidd, Henry James
Published: (2024)
Mannitol is required for asexual sporulation in the wheat pathogen Stagonospora nodorum (glume blotch)
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
Wheat lines exhibiting variation in tolerance of Septoria tritici blotch differentiated by grain source limitation
by: Collin, F., et al.
Published: (2018)
by: Collin, F., et al.
Published: (2018)
The use of pentaploid crosses for durum wheat improvement to Septoria tritici blotch disease resistance and D-genome introgression into durum wheat
by: Othmeni, Manel
Published: (2019)
by: Othmeni, Manel
Published: (2019)
Dissecting the role of histidine kinase and Hog1 mitogen-activated protein kinase signalling in stress tolerance and pathogenicity of Parastagonospora nodorum on wheat.
by: John, E., et al.
Published: (2016)
by: John, E., et al.
Published: (2016)
Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2005)
by: Solomon, P., et al.
Published: (2005)
Malayamycin, a new streptomycete antifungal compound, specifically inhibits sporulation of Stagonospora nodorum (Berk) Castell and Germano, the cause of wheat glume blotch disease
by: Li, W., et al.
Published: (2008)
by: Li, W., et al.
Published: (2008)
A metabolomic approach to dissecting osmotic stress in the wheat pathogen Stagonospora nodorum
by: Lowe, R., et al.
Published: (2008)
by: Lowe, R., et al.
Published: (2008)
The Disruption of a Gα Subunit Sheds New Light on the Pathogenicity of Stagonospora nodorum on Wheat
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Genetic mapping using a wheat multi-founder population reveals a locus on chromosome 2A controlling resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum
by: Lin, M., et al.
Published: (2020)
by: Lin, M., et al.
Published: (2020)
Prevalence and importance of sensitivity to Stagonospora nodorum necrotrophic effector SnTox3 in current Western Australian wheat cultivars.
by: Lichtenzveig, Judith, et al.
Published: (2011)
by: Lichtenzveig, Judith, et al.
Published: (2011)
Quantitative disease resistance assessment by real-time PCR using the Stagonospora nodorum wheat pathosystem as a model
by: Oliver, Richard, et al.
Published: (2008)
by: Oliver, Richard, et al.
Published: (2008)
Assessing European wheat sensitivities to parastagonospora nodorum necrotrophic effectors and fine-mapping the Snn3-B1 locus conferring sensitivity to the effector SnTox3
by: Downie, R., et al.
Published: (2018)
by: Downie, R., et al.
Published: (2018)
The tolerance of wheat (Triticum aestivum L.) to Septori tritici blotch
by: Collin, François
Published: (2018)
by: Collin, François
Published: (2018)
The utilisation of di/tri peptides by Stagonospora nodorum is dispensable for wheat infection
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Functional characterisation of glyoxalase I from the fungal wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Metabolite profiling identifies the mycotoxin alternariol in the pathogen Stagonospora nodorum
by: Tan, Kar-Chun, et al.
Published: (2009)
by: Tan, Kar-Chun, et al.
Published: (2009)
δ-Aminolevulinic acid synthesis is required for virulence of the wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
Isolation and characterization of EST-derived microsatellite loci from the fungal wheat pathogen Phaeosphaeria nodorum
by: Stukenbrock, E., et al.
Published: (2005)
by: Stukenbrock, E., et al.
Published: (2005)
Blotch
by: Husin, Muhammad, et al.
Published: (2010)
by: Husin, Muhammad, et al.
Published: (2010)
Dothideomycete-plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum
by: Hane, J., et al.
Published: (2007)
by: Hane, J., et al.
Published: (2007)
The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system
by: Liu, Z., et al.
Published: (2006)
by: Liu, Z., et al.
Published: (2006)
Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum
by: Lowe, R., et al.
Published: (2009)
by: Lowe, R., et al.
Published: (2009)
The Transcription Factor StuA Regulates Central Carbon Metabolism,Mycotoxin Production, and Effector Gene Expression in the WheatPathogen Stagonospora nodorum
by: Ip-Cho, S., et al.
Published: (2010)
by: Ip-Cho, S., et al.
Published: (2010)
Dissecting the role of G-protein signalling in primary metabolism in the wheat pathogen Stagonospora nodorum
by: Gummer, J., et al.
Published: (2013)
by: Gummer, J., et al.
Published: (2013)
Chromosome-level genome assembly and manually-curated proteome of model necrotroph Parastagonospora nodorum Sn15 reveals a genome-wide trove of candidate effector homologs, and redundancy of virulence-related functions within an accessory chromosome
by: Bertazzoni, Stefania, et al.
Published: (2021)
by: Bertazzoni, Stefania, et al.
Published: (2021)
Investigating the role of calcium/calmodulin-dependent protein kinases in Stagonospora nodorum
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
Fine-mapping the wheat Snn1 locus conferring sensitivity to the Parastagonospora nodorum necrotrophic effector SnTox1 using an eight founder multiparent advanced generation inter-cross population
by: Cockram, J., et al.
Published: (2015)
by: Cockram, J., et al.
Published: (2015)
Similar Items
-
Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies
by: Phan, H., et al.
Published: (2018) -
GWAS analysis reveals distinct pathogenicity profiles of Australian Parastagonospora nodorum isolates and identification of marker-trait-associations to septoria nodorum blotch
by: Phan, Huyen, et al.
Published: (2021) -
Genome-wide association mapping of resistance to septoria nodorum leaf blotch in a nordic spring wheat collection
by: Ruud, A.K., et al.
Published: (2019) -
Low Amplitude Boom-and-Bust Cycles Define the Septoria Nodorum Blotch Interaction
by: Phan, Huyen T. T., et al.
Published: (2020) -
Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat
by: Solomon, P., et al.
Published: (2006)