The influence of magnetic fields on calcium carbonate scale formation within monoethylene glycol solutions at regeneration conditions

One of the most discussed topics related to the effects of external magnetic fields (MF) on aqueous solutions is the influence on the scale formation of calcium carbonate (CaCO3). However, the extent of the effect of these forces on the scale formation in the non-aqueous solutions has not been inves...

Full description

Bibliographic Details
Main Authors: Al Helal, Ammar, Soames, Adam, Iglauer, Stefan, Gubner, Rolf, Barifcani, Ahmed
Format: Journal Article
Published: Elsevier 2019
Online Access:http://hdl.handle.net/20.500.11937/72868
_version_ 1848762862987640832
author Al Helal, Ammar
Soames, Adam
Iglauer, Stefan
Gubner, Rolf
Barifcani, Ahmed
author_facet Al Helal, Ammar
Soames, Adam
Iglauer, Stefan
Gubner, Rolf
Barifcani, Ahmed
author_sort Al Helal, Ammar
building Curtin Institutional Repository
collection Online Access
description One of the most discussed topics related to the effects of external magnetic fields (MF) on aqueous solutions is the influence on the scale formation of calcium carbonate (CaCO3). However, the extent of the effect of these forces on the scale formation in the non-aqueous solutions has not been investigated so far. So MFs will be applied to non-aqueous mixtures to find out the behavior of scale formation. This study presents the results of inorganic scale formation within MEG solutions containing Ca2+ and HCO3- ions, which has been investigated using both static and dynamic scale loop (DSL) evaluation techniques. Furthermore, the influence of MFs on scale formation using the dynamic technique has also been studied. Results were generated using brine/MEG solutions exposed to an external MF produced by a 0.65 T Neodymium magnet for 2.5 s. The degree of scale formation was examined by measuring the pressure build-up across a capillary coil as scale was developed. Moreover, differences in CaCO3 morphologies were evaluated for the exposed and blank trials via the DSL technique and compared with the results obtained from the static scale evaluation method. The results of this research have demonstrated that the short exposure (2.5 s) to a powerful MF can significantly reduce scale-formation in the rich MEG solutions within the capillary coil. This is due to the alteration of the proton spin inversion in the field of diamagnetic salts. Furthermore, a significant difference in CaCO3 morphology was observed for the scale formed during dynamic and static conditions. The generating results help to reduce the use of chemical scale inhibitors with MEG solution during the gas hydrate treatments, especially when the concentration of MEG in formation water is low and scale formation is more likely to occur.
first_indexed 2025-11-14T10:54:19Z
format Journal Article
id curtin-20.500.11937-72868
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T10:54:19Z
publishDate 2019
publisher Elsevier
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-728682021-01-08T07:54:27Z The influence of magnetic fields on calcium carbonate scale formation within monoethylene glycol solutions at regeneration conditions Al Helal, Ammar Soames, Adam Iglauer, Stefan Gubner, Rolf Barifcani, Ahmed One of the most discussed topics related to the effects of external magnetic fields (MF) on aqueous solutions is the influence on the scale formation of calcium carbonate (CaCO3). However, the extent of the effect of these forces on the scale formation in the non-aqueous solutions has not been investigated so far. So MFs will be applied to non-aqueous mixtures to find out the behavior of scale formation. This study presents the results of inorganic scale formation within MEG solutions containing Ca2+ and HCO3- ions, which has been investigated using both static and dynamic scale loop (DSL) evaluation techniques. Furthermore, the influence of MFs on scale formation using the dynamic technique has also been studied. Results were generated using brine/MEG solutions exposed to an external MF produced by a 0.65 T Neodymium magnet for 2.5 s. The degree of scale formation was examined by measuring the pressure build-up across a capillary coil as scale was developed. Moreover, differences in CaCO3 morphologies were evaluated for the exposed and blank trials via the DSL technique and compared with the results obtained from the static scale evaluation method. The results of this research have demonstrated that the short exposure (2.5 s) to a powerful MF can significantly reduce scale-formation in the rich MEG solutions within the capillary coil. This is due to the alteration of the proton spin inversion in the field of diamagnetic salts. Furthermore, a significant difference in CaCO3 morphology was observed for the scale formed during dynamic and static conditions. The generating results help to reduce the use of chemical scale inhibitors with MEG solution during the gas hydrate treatments, especially when the concentration of MEG in formation water is low and scale formation is more likely to occur. 2019 Journal Article http://hdl.handle.net/20.500.11937/72868 10.1016/j.petrol.2018.09.100 http://creativecommons.org/licenses/by/4.0/ Elsevier fulltext
spellingShingle Al Helal, Ammar
Soames, Adam
Iglauer, Stefan
Gubner, Rolf
Barifcani, Ahmed
The influence of magnetic fields on calcium carbonate scale formation within monoethylene glycol solutions at regeneration conditions
title The influence of magnetic fields on calcium carbonate scale formation within monoethylene glycol solutions at regeneration conditions
title_full The influence of magnetic fields on calcium carbonate scale formation within monoethylene glycol solutions at regeneration conditions
title_fullStr The influence of magnetic fields on calcium carbonate scale formation within monoethylene glycol solutions at regeneration conditions
title_full_unstemmed The influence of magnetic fields on calcium carbonate scale formation within monoethylene glycol solutions at regeneration conditions
title_short The influence of magnetic fields on calcium carbonate scale formation within monoethylene glycol solutions at regeneration conditions
title_sort influence of magnetic fields on calcium carbonate scale formation within monoethylene glycol solutions at regeneration conditions
url http://hdl.handle.net/20.500.11937/72868