Rock fluidization during peak-ring formation of large impact structures

Large meteorite impact structures on the terrestrial bodies of the Solar System contain pronounced topographic rings, which emerged from uplifted target (crustal) rocks within minutes of impact. To flow rapidly over large distances, these target rocks must have weakened drastically, but they subsequ...

Full description

Bibliographic Details
Main Authors: Riller, U., Poelchau, M., Rae, A., Schulte, F., Collins, G., Melosh, H., Grieve, R., Morgan, J., Gulick, S., Lofi, J., Diaw, A., McCall, N., Kring, D., Green, S., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Xiao, L., Lowery, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Rasmussen, C., Rebolledo-Vieyra, M., Sato, H., Smit, J., Tikoo-Schantz, S., Tomioka, N., Whalen, M., Wittmann, A., Yamaguchi, K., Fucugauchi, J., Bralower, T.
Format: Journal Article
Published: Nature Publishing Group 2018
Online Access:http://hdl.handle.net/20.500.11937/72817
_version_ 1848762849943355392
author Riller, U.
Poelchau, M.
Rae, A.
Schulte, F.
Collins, G.
Melosh, H.
Grieve, R.
Morgan, J.
Gulick, S.
Lofi, J.
Diaw, A.
McCall, N.
Kring, D.
Morgan, J.
Gulick, S.
Green, S.
Lofi, J.
Chenot, E.
Christeson, G.
Claeys, P.
Cockell, C.
Coolen, Marco
Ferrière, L.
Gebhardt, C.
Goto, K.
Jones, H.
Kring, D.
Xiao, L.
Lowery, C.
Ocampo-Torres, R.
Perez-Cruz, L.
Pickersgill, A.
Poelchau, M.
Rae, A.
Rasmussen, C.
Rebolledo-Vieyra, M.
Riller, U.
Sato, H.
Smit, J.
Tikoo-Schantz, S.
Tomioka, N.
Whalen, M.
Wittmann, A.
Yamaguchi, K.
Fucugauchi, J.
Bralower, T.
author_facet Riller, U.
Poelchau, M.
Rae, A.
Schulte, F.
Collins, G.
Melosh, H.
Grieve, R.
Morgan, J.
Gulick, S.
Lofi, J.
Diaw, A.
McCall, N.
Kring, D.
Morgan, J.
Gulick, S.
Green, S.
Lofi, J.
Chenot, E.
Christeson, G.
Claeys, P.
Cockell, C.
Coolen, Marco
Ferrière, L.
Gebhardt, C.
Goto, K.
Jones, H.
Kring, D.
Xiao, L.
Lowery, C.
Ocampo-Torres, R.
Perez-Cruz, L.
Pickersgill, A.
Poelchau, M.
Rae, A.
Rasmussen, C.
Rebolledo-Vieyra, M.
Riller, U.
Sato, H.
Smit, J.
Tikoo-Schantz, S.
Tomioka, N.
Whalen, M.
Wittmann, A.
Yamaguchi, K.
Fucugauchi, J.
Bralower, T.
author_sort Riller, U.
building Curtin Institutional Repository
collection Online Access
description Large meteorite impact structures on the terrestrial bodies of the Solar System contain pronounced topographic rings, which emerged from uplifted target (crustal) rocks within minutes of impact. To flow rapidly over large distances, these target rocks must have weakened drastically, but they subsequently regained sufficient strength to build and sustain topographic rings. The mechanisms of rock deformation that accomplish such extreme change in mechanical behaviour during cratering are largely unknown and have been debated for decades. Recent drilling of the approximately 200-km-diameter Chicxulub impact structure in Mexico has produced a record of brittle and viscous deformation within its peak-ring rocks. Here we show how catastrophic rock weakening upon impact is followed by an increase in rock strength that culminated in the formation of the peak ring during cratering. The observations point to quasi-continuous rock flow and hence acoustic fluidization as the dominant physical process controlling initial cratering, followed by increasingly localized faulting.
first_indexed 2025-11-14T10:54:07Z
format Journal Article
id curtin-20.500.11937-72817
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T10:54:07Z
publishDate 2018
publisher Nature Publishing Group
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-728172019-01-15T01:02:15Z Rock fluidization during peak-ring formation of large impact structures Riller, U. Poelchau, M. Rae, A. Schulte, F. Collins, G. Melosh, H. Grieve, R. Morgan, J. Gulick, S. Lofi, J. Diaw, A. McCall, N. Kring, D. Morgan, J. Gulick, S. Green, S. Lofi, J. Chenot, E. Christeson, G. Claeys, P. Cockell, C. Coolen, Marco Ferrière, L. Gebhardt, C. Goto, K. Jones, H. Kring, D. Xiao, L. Lowery, C. Ocampo-Torres, R. Perez-Cruz, L. Pickersgill, A. Poelchau, M. Rae, A. Rasmussen, C. Rebolledo-Vieyra, M. Riller, U. Sato, H. Smit, J. Tikoo-Schantz, S. Tomioka, N. Whalen, M. Wittmann, A. Yamaguchi, K. Fucugauchi, J. Bralower, T. Large meteorite impact structures on the terrestrial bodies of the Solar System contain pronounced topographic rings, which emerged from uplifted target (crustal) rocks within minutes of impact. To flow rapidly over large distances, these target rocks must have weakened drastically, but they subsequently regained sufficient strength to build and sustain topographic rings. The mechanisms of rock deformation that accomplish such extreme change in mechanical behaviour during cratering are largely unknown and have been debated for decades. Recent drilling of the approximately 200-km-diameter Chicxulub impact structure in Mexico has produced a record of brittle and viscous deformation within its peak-ring rocks. Here we show how catastrophic rock weakening upon impact is followed by an increase in rock strength that culminated in the formation of the peak ring during cratering. The observations point to quasi-continuous rock flow and hence acoustic fluidization as the dominant physical process controlling initial cratering, followed by increasingly localized faulting. 2018 Journal Article http://hdl.handle.net/20.500.11937/72817 10.1038/s41586-018-0607-z Nature Publishing Group restricted
spellingShingle Riller, U.
Poelchau, M.
Rae, A.
Schulte, F.
Collins, G.
Melosh, H.
Grieve, R.
Morgan, J.
Gulick, S.
Lofi, J.
Diaw, A.
McCall, N.
Kring, D.
Morgan, J.
Gulick, S.
Green, S.
Lofi, J.
Chenot, E.
Christeson, G.
Claeys, P.
Cockell, C.
Coolen, Marco
Ferrière, L.
Gebhardt, C.
Goto, K.
Jones, H.
Kring, D.
Xiao, L.
Lowery, C.
Ocampo-Torres, R.
Perez-Cruz, L.
Pickersgill, A.
Poelchau, M.
Rae, A.
Rasmussen, C.
Rebolledo-Vieyra, M.
Riller, U.
Sato, H.
Smit, J.
Tikoo-Schantz, S.
Tomioka, N.
Whalen, M.
Wittmann, A.
Yamaguchi, K.
Fucugauchi, J.
Bralower, T.
Rock fluidization during peak-ring formation of large impact structures
title Rock fluidization during peak-ring formation of large impact structures
title_full Rock fluidization during peak-ring formation of large impact structures
title_fullStr Rock fluidization during peak-ring formation of large impact structures
title_full_unstemmed Rock fluidization during peak-ring formation of large impact structures
title_short Rock fluidization during peak-ring formation of large impact structures
title_sort rock fluidization during peak-ring formation of large impact structures
url http://hdl.handle.net/20.500.11937/72817