Nanofluids for enhanced oil recovery processes: Wettability alteration using zirconium oxide

© 2016, Offshore Technology Conference Ultimate oil recovery and displacement efficiency at the pore-scale are controlled by the rock wettability thus there is a growing interest in the wetting behaviour of reservoir rocks as production from fractured oil-wet or mixed-wet limestone formations have r...

Full description

Bibliographic Details
Main Authors: Nwidee, L., Al-Anssari, S., Barifcani, Ahmed, Sarmadivaleh, Mohammad, Iglauer, Stefan
Format: Conference Paper
Published: 2016
Online Access:http://hdl.handle.net/20.500.11937/72385
Description
Summary:© 2016, Offshore Technology Conference Ultimate oil recovery and displacement efficiency at the pore-scale are controlled by the rock wettability thus there is a growing interest in the wetting behaviour of reservoir rocks as production from fractured oil-wet or mixed-wet limestone formations have remained a key challenge. Conventional waterflooding methods are inefficient in such formation due to poor spontaneous imbibition of water into the oil-wet rock capillaries. However, altering the wettability to water-wet could yield recovery of significant amounts of additional oil thus this study investigates the influence of nanoparticles on wettability alteration. The efficiency of various formulated zirconium-oxide (ZrO2) based nanofluids at different nanoparticle concentrations (0-0.05 wt. %) was assessed through contact angle measurements. Results from the experiments showed ZrO2 nanofluid have great potentials in changing oil-wet limestone towards strongly water-wet condition. The best performance was observed at 0.05wt% ZrO2 nanoparticle concentration which changed an originally strongly oil-wet (152°) calcite substrate towards a strongly water-wet (44°) state thus we conclude that ZrO2 is a good agent for enhanced oil recovery.