Exhaled nitric oxide concentration and decompression-induced bubble formation: An index of decompression severity in humans?

Introduction Previous studies have highlighted a decreased exhaled nitric oxide concentration (FE NO) in divers after hyperbaric exposure in a dry chamber or following a wet dive. The underlying mechanisms of this decrease remain however unknown. The aim of this study was to quantify the separate ef...

Full description

Bibliographic Details
Main Authors: Pontier, J., Buzzacott, Peter, Nastorg, J., Dinh-Xuan, A., Lambrechts, K.
Format: Journal Article
Published: Elsevier Inc 2014
Online Access:http://hdl.handle.net/20.500.11937/72002
_version_ 1848762632722448384
author Pontier, J.
Buzzacott, Peter
Nastorg, J.
Dinh-Xuan, A.
Lambrechts, K.
author_facet Pontier, J.
Buzzacott, Peter
Nastorg, J.
Dinh-Xuan, A.
Lambrechts, K.
author_sort Pontier, J.
building Curtin Institutional Repository
collection Online Access
description Introduction Previous studies have highlighted a decreased exhaled nitric oxide concentration (FE NO) in divers after hyperbaric exposure in a dry chamber or following a wet dive. The underlying mechanisms of this decrease remain however unknown. The aim of this study was to quantify the separate effects of submersion, hyperbaric hyperoxia exposure and decompression-induced bubble formation on FE NO after a wet dive. Methods Healthy experienced divers (n = 31) were assigned to either (i) a group making a scuba-air dive (Air dive), (ii) a group with a shallow oxygen dive protocol (Oxygen dive) or (iii) a group making a deep dive breathing a trimix gas mixture (deep-dive). Bubble signals were graded with the KISS score. Before and after each dive FE NO values were measured using a hand-held electrochemical analyzer. Results There was no change in post-dive values of FE NO values (expressed in ppb = parts per billion) in the Air dive group (15.1 ± 3.6 ppb vs. 14.3 ± 4.7 ppb, n = 9, p = 0.32). There was a significant decrease in post-dive values of FE NO in the Oxygen dive group (15.6 ± 6 ppb vs. 11.7 ± 4.7 ppb, n = 9, p = 0.009). There was an even more pronounced decrease in the deep dive group (16.4 ± 6.6 ppb vs. 9.4 ± 3.5 ppb, n = 13, p < 0.001) and a significant correlation between KISS bubble score >0 (n = 13) and percentage decrease in post-dive FE NO values (r = -0.53, p = 0.03). Discussion Submersion and hyperbaric hyperoxia exposure cannot account entirely for these results suggesting the possibility that, in combination, one effect magnifies the other. A main finding of the present study is a significant relationship between reduction in exhaled NO concentration and dive-induced bubble formation. We postulate that exhaled NO concentration could be a useful index of decompression severity in healthy human divers. © 2014 Published by Elsevier Inc.
first_indexed 2025-11-14T10:50:39Z
format Journal Article
id curtin-20.500.11937-72002
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T10:50:39Z
publishDate 2014
publisher Elsevier Inc
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-720022018-12-13T09:34:50Z Exhaled nitric oxide concentration and decompression-induced bubble formation: An index of decompression severity in humans? Pontier, J. Buzzacott, Peter Nastorg, J. Dinh-Xuan, A. Lambrechts, K. Introduction Previous studies have highlighted a decreased exhaled nitric oxide concentration (FE NO) in divers after hyperbaric exposure in a dry chamber or following a wet dive. The underlying mechanisms of this decrease remain however unknown. The aim of this study was to quantify the separate effects of submersion, hyperbaric hyperoxia exposure and decompression-induced bubble formation on FE NO after a wet dive. Methods Healthy experienced divers (n = 31) were assigned to either (i) a group making a scuba-air dive (Air dive), (ii) a group with a shallow oxygen dive protocol (Oxygen dive) or (iii) a group making a deep dive breathing a trimix gas mixture (deep-dive). Bubble signals were graded with the KISS score. Before and after each dive FE NO values were measured using a hand-held electrochemical analyzer. Results There was no change in post-dive values of FE NO values (expressed in ppb = parts per billion) in the Air dive group (15.1 ± 3.6 ppb vs. 14.3 ± 4.7 ppb, n = 9, p = 0.32). There was a significant decrease in post-dive values of FE NO in the Oxygen dive group (15.6 ± 6 ppb vs. 11.7 ± 4.7 ppb, n = 9, p = 0.009). There was an even more pronounced decrease in the deep dive group (16.4 ± 6.6 ppb vs. 9.4 ± 3.5 ppb, n = 13, p < 0.001) and a significant correlation between KISS bubble score >0 (n = 13) and percentage decrease in post-dive FE NO values (r = -0.53, p = 0.03). Discussion Submersion and hyperbaric hyperoxia exposure cannot account entirely for these results suggesting the possibility that, in combination, one effect magnifies the other. A main finding of the present study is a significant relationship between reduction in exhaled NO concentration and dive-induced bubble formation. We postulate that exhaled NO concentration could be a useful index of decompression severity in healthy human divers. © 2014 Published by Elsevier Inc. 2014 Journal Article http://hdl.handle.net/20.500.11937/72002 10.1016/j.niox.2014.04.005 Elsevier Inc restricted
spellingShingle Pontier, J.
Buzzacott, Peter
Nastorg, J.
Dinh-Xuan, A.
Lambrechts, K.
Exhaled nitric oxide concentration and decompression-induced bubble formation: An index of decompression severity in humans?
title Exhaled nitric oxide concentration and decompression-induced bubble formation: An index of decompression severity in humans?
title_full Exhaled nitric oxide concentration and decompression-induced bubble formation: An index of decompression severity in humans?
title_fullStr Exhaled nitric oxide concentration and decompression-induced bubble formation: An index of decompression severity in humans?
title_full_unstemmed Exhaled nitric oxide concentration and decompression-induced bubble formation: An index of decompression severity in humans?
title_short Exhaled nitric oxide concentration and decompression-induced bubble formation: An index of decompression severity in humans?
title_sort exhaled nitric oxide concentration and decompression-induced bubble formation: an index of decompression severity in humans?
url http://hdl.handle.net/20.500.11937/72002