Acetone adsorption to (BeO)12, (MgO)12 and (ZnO)12 nanoparticles and their graphene composites: A density functional theory (DFT) study

© 2018 Elsevier B.V. Acetone, one of the most common VOCs, could cause serious air pollution and threat the human health when someone is exposed to certain concentration of acetone. Thereof, acetone detection and elimination in the air was significant to prohibit the hazard of acetone. Acetone adsor...

Full description

Bibliographic Details
Main Authors: Mo, Y., Li, H., Zhou, K., Ma, X., Guo, Y., Wang, Shaobin, Li, L.
Format: Journal Article
Published: Elsevier BV North-Holland 2019
Online Access:http://hdl.handle.net/20.500.11937/71985
_version_ 1848762628133879808
author Mo, Y.
Li, H.
Zhou, K.
Ma, X.
Guo, Y.
Wang, Shaobin
Li, L.
author_facet Mo, Y.
Li, H.
Zhou, K.
Ma, X.
Guo, Y.
Wang, Shaobin
Li, L.
author_sort Mo, Y.
building Curtin Institutional Repository
collection Online Access
description © 2018 Elsevier B.V. Acetone, one of the most common VOCs, could cause serious air pollution and threat the human health when someone is exposed to certain concentration of acetone. Thereof, acetone detection and elimination in the air was significant to prohibit the hazard of acetone. Acetone adsorbed to (BeO)12, (MgO)12 and (ZnO)12 nanoparticles and their graphene composites was detailed studied by density functional theory. The adsorption energy of acetone to (MO)12 (M = Be, Mg, Zn) nanoparticles and their graphene composites were high, which means that all the adsorbents are eligible for acetone adsorption. The variation of band gap was utilized to describe the sensibility to acetone. It was found that the (ZnO)12 nanoparticle and its graphene composite were not sensitive to the acetone, while the (BeO)12 and (MgO)12, as well as their graphene composites, were sensitive to acetone. Among the (BeO)12-graphene and (MgO)12-graphene, the latter exhibits more sensitive than the former. The conventional transition state theory was been took to estimate the recovery time. According to our calculation, (BeO)12 and (ZnO)12 nanoparticles and all (MO)12 graphene composites have too long recovery time for the high adsorption energy hampering the recovery of the adsorbents. Contrastingly, (MgO)12 nanoparticle is sensitive to acetone and has receivable recovery time. Therefore, (BeO)12, (MgO)12 and (ZnO)12 nanoparticles and their graphene composites may be potential adsorbents for acetone adsorption for their relatively high adsorption energy. The (MgO)12 nanoparticle could be an excellent gas sensor for detecting acetone due to the sensitivity acetone and receivable recovery time.
first_indexed 2025-11-14T10:50:35Z
format Journal Article
id curtin-20.500.11937-71985
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T10:50:35Z
publishDate 2019
publisher Elsevier BV North-Holland
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-719852019-04-01T06:06:17Z Acetone adsorption to (BeO)12, (MgO)12 and (ZnO)12 nanoparticles and their graphene composites: A density functional theory (DFT) study Mo, Y. Li, H. Zhou, K. Ma, X. Guo, Y. Wang, Shaobin Li, L. © 2018 Elsevier B.V. Acetone, one of the most common VOCs, could cause serious air pollution and threat the human health when someone is exposed to certain concentration of acetone. Thereof, acetone detection and elimination in the air was significant to prohibit the hazard of acetone. Acetone adsorbed to (BeO)12, (MgO)12 and (ZnO)12 nanoparticles and their graphene composites was detailed studied by density functional theory. The adsorption energy of acetone to (MO)12 (M = Be, Mg, Zn) nanoparticles and their graphene composites were high, which means that all the adsorbents are eligible for acetone adsorption. The variation of band gap was utilized to describe the sensibility to acetone. It was found that the (ZnO)12 nanoparticle and its graphene composite were not sensitive to the acetone, while the (BeO)12 and (MgO)12, as well as their graphene composites, were sensitive to acetone. Among the (BeO)12-graphene and (MgO)12-graphene, the latter exhibits more sensitive than the former. The conventional transition state theory was been took to estimate the recovery time. According to our calculation, (BeO)12 and (ZnO)12 nanoparticles and all (MO)12 graphene composites have too long recovery time for the high adsorption energy hampering the recovery of the adsorbents. Contrastingly, (MgO)12 nanoparticle is sensitive to acetone and has receivable recovery time. Therefore, (BeO)12, (MgO)12 and (ZnO)12 nanoparticles and their graphene composites may be potential adsorbents for acetone adsorption for their relatively high adsorption energy. The (MgO)12 nanoparticle could be an excellent gas sensor for detecting acetone due to the sensitivity acetone and receivable recovery time. 2019 Journal Article http://hdl.handle.net/20.500.11937/71985 10.1016/j.apsusc.2018.11.079 Elsevier BV North-Holland restricted
spellingShingle Mo, Y.
Li, H.
Zhou, K.
Ma, X.
Guo, Y.
Wang, Shaobin
Li, L.
Acetone adsorption to (BeO)12, (MgO)12 and (ZnO)12 nanoparticles and their graphene composites: A density functional theory (DFT) study
title Acetone adsorption to (BeO)12, (MgO)12 and (ZnO)12 nanoparticles and their graphene composites: A density functional theory (DFT) study
title_full Acetone adsorption to (BeO)12, (MgO)12 and (ZnO)12 nanoparticles and their graphene composites: A density functional theory (DFT) study
title_fullStr Acetone adsorption to (BeO)12, (MgO)12 and (ZnO)12 nanoparticles and their graphene composites: A density functional theory (DFT) study
title_full_unstemmed Acetone adsorption to (BeO)12, (MgO)12 and (ZnO)12 nanoparticles and their graphene composites: A density functional theory (DFT) study
title_short Acetone adsorption to (BeO)12, (MgO)12 and (ZnO)12 nanoparticles and their graphene composites: A density functional theory (DFT) study
title_sort acetone adsorption to (beo)12, (mgo)12 and (zno)12 nanoparticles and their graphene composites: a density functional theory (dft) study
url http://hdl.handle.net/20.500.11937/71985