Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings

Carbon mineralisation of ultramafic mine tailings can reduce net emissions of anthropogenic carbon dioxide by reacting Mg-silicate and hydroxide minerals with atmospheric CO2 to produce carbonate minerals. We investigate the controls on carbonate mineral formation at the derelict Woodsreef chrysotil...

Full description

Bibliographic Details
Main Authors: Turvey, C., Wilson, S., Hamilton, J., Tait, A., McCutcheon, J., Beinlich, Andreas, Fallon, S., Dipple, G., Southam, G.
Format: Journal Article
Published: Elsevier 2018
Online Access:http://hdl.handle.net/20.500.11937/71319
_version_ 1848762448602988544
author Turvey, C.
Wilson, S.
Hamilton, J.
Tait, A.
McCutcheon, J.
Beinlich, Andreas
Fallon, S.
Dipple, G.
Southam, G.
author_facet Turvey, C.
Wilson, S.
Hamilton, J.
Tait, A.
McCutcheon, J.
Beinlich, Andreas
Fallon, S.
Dipple, G.
Southam, G.
author_sort Turvey, C.
building Curtin Institutional Repository
collection Online Access
description Carbon mineralisation of ultramafic mine tailings can reduce net emissions of anthropogenic carbon dioxide by reacting Mg-silicate and hydroxide minerals with atmospheric CO2 to produce carbonate minerals. We investigate the controls on carbonate mineral formation at the derelict Woodsreef chrysotile mine (New South Wales, Australia). Quantitative XRD was used to understand how mineralogy changes with depth into the tailings pile, and shows that hydromagnesite [Mg5(CO3)4(OH)2·4H2O], is present in shallow tailings material (<40?cm), while coalingite [Mg10Fe3+2(CO3)(OH)24·2H2O] and pyroaurite [Mg6Fe3+2(CO3)(OH)16·4H2O] are forming deeper in the tailings material. This indicates that there may be two geochemical environments within the upper ~1?m of the tailings, with hydromagnesite forming within the shallow tailings via carbonation of brucite in CO2-rich conditions, and pyroaurite and coalingite forming under more carbon limited conditions at depth. Radiogenic isotope results indicate hydromagnesite and pyroaurite have a modern (F14C > 0.8) atmospheric CO2 source. Laboratory-based anion exchange experiments, conducted to explore stable C isotope fractionation in pyroaurite, shows that pyroaurite d13C values change with carbon availability, and 13C-depleted signatures are typical of hydrotalcites in C-limited environments, such as the deep tailings at Woodsreef. Quantitative XRD and elemental C data estimates that Woodsreef absorbs between of 229.0–405.1?g CO2?m-2 y-1.
first_indexed 2025-11-14T10:47:44Z
format Journal Article
id curtin-20.500.11937-71319
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T10:47:44Z
publishDate 2018
publisher Elsevier
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-713192018-12-13T09:34:32Z Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings Turvey, C. Wilson, S. Hamilton, J. Tait, A. McCutcheon, J. Beinlich, Andreas Fallon, S. Dipple, G. Southam, G. Carbon mineralisation of ultramafic mine tailings can reduce net emissions of anthropogenic carbon dioxide by reacting Mg-silicate and hydroxide minerals with atmospheric CO2 to produce carbonate minerals. We investigate the controls on carbonate mineral formation at the derelict Woodsreef chrysotile mine (New South Wales, Australia). Quantitative XRD was used to understand how mineralogy changes with depth into the tailings pile, and shows that hydromagnesite [Mg5(CO3)4(OH)2·4H2O], is present in shallow tailings material (<40?cm), while coalingite [Mg10Fe3+2(CO3)(OH)24·2H2O] and pyroaurite [Mg6Fe3+2(CO3)(OH)16·4H2O] are forming deeper in the tailings material. This indicates that there may be two geochemical environments within the upper ~1?m of the tailings, with hydromagnesite forming within the shallow tailings via carbonation of brucite in CO2-rich conditions, and pyroaurite and coalingite forming under more carbon limited conditions at depth. Radiogenic isotope results indicate hydromagnesite and pyroaurite have a modern (F14C > 0.8) atmospheric CO2 source. Laboratory-based anion exchange experiments, conducted to explore stable C isotope fractionation in pyroaurite, shows that pyroaurite d13C values change with carbon availability, and 13C-depleted signatures are typical of hydrotalcites in C-limited environments, such as the deep tailings at Woodsreef. Quantitative XRD and elemental C data estimates that Woodsreef absorbs between of 229.0–405.1?g CO2?m-2 y-1. 2018 Journal Article http://hdl.handle.net/20.500.11937/71319 10.1016/j.ijggc.2018.09.015 Elsevier restricted
spellingShingle Turvey, C.
Wilson, S.
Hamilton, J.
Tait, A.
McCutcheon, J.
Beinlich, Andreas
Fallon, S.
Dipple, G.
Southam, G.
Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings
title Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings
title_full Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings
title_fullStr Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings
title_full_unstemmed Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings
title_short Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings
title_sort hydrotalcites and hydrated mg-carbonates as carbon sinks in serpentinite mineral wastes from the woodsreef chrysotile mine, new south wales, australia: controls on carbonate mineralogy and efficiency of co2 air capture in mine tailings
url http://hdl.handle.net/20.500.11937/71319