Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings
Carbon mineralisation of ultramafic mine tailings can reduce net emissions of anthropogenic carbon dioxide by reacting Mg-silicate and hydroxide minerals with atmospheric CO2 to produce carbonate minerals. We investigate the controls on carbonate mineral formation at the derelict Woodsreef chrysotil...
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier
2018
|
| Online Access: | http://hdl.handle.net/20.500.11937/71319 |
| _version_ | 1848762448602988544 |
|---|---|
| author | Turvey, C. Wilson, S. Hamilton, J. Tait, A. McCutcheon, J. Beinlich, Andreas Fallon, S. Dipple, G. Southam, G. |
| author_facet | Turvey, C. Wilson, S. Hamilton, J. Tait, A. McCutcheon, J. Beinlich, Andreas Fallon, S. Dipple, G. Southam, G. |
| author_sort | Turvey, C. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | Carbon mineralisation of ultramafic mine tailings can reduce net emissions of anthropogenic carbon dioxide by reacting Mg-silicate and hydroxide minerals with atmospheric CO2 to produce carbonate minerals. We investigate the controls on carbonate mineral formation at the derelict Woodsreef chrysotile mine (New South Wales, Australia). Quantitative XRD was used to understand how mineralogy changes with depth into the tailings pile, and shows that hydromagnesite [Mg5(CO3)4(OH)2·4H2O], is present in shallow tailings material (<40?cm), while coalingite [Mg10Fe3+2(CO3)(OH)24·2H2O] and pyroaurite [Mg6Fe3+2(CO3)(OH)16·4H2O] are forming deeper in the tailings material. This indicates that there may be two geochemical environments within the upper ~1?m of the tailings, with hydromagnesite forming within the shallow tailings via carbonation of brucite in CO2-rich conditions, and pyroaurite and coalingite forming under more carbon limited conditions at depth. Radiogenic isotope results indicate hydromagnesite and pyroaurite have a modern (F14C > 0.8) atmospheric CO2 source. Laboratory-based anion exchange experiments, conducted to explore stable C isotope fractionation in pyroaurite, shows that pyroaurite d13C values change with carbon availability, and 13C-depleted signatures are typical of hydrotalcites in C-limited environments, such as the deep tailings at Woodsreef. Quantitative XRD and elemental C data estimates that Woodsreef absorbs between of 229.0–405.1?g CO2?m-2 y-1. |
| first_indexed | 2025-11-14T10:47:44Z |
| format | Journal Article |
| id | curtin-20.500.11937-71319 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T10:47:44Z |
| publishDate | 2018 |
| publisher | Elsevier |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-713192018-12-13T09:34:32Z Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings Turvey, C. Wilson, S. Hamilton, J. Tait, A. McCutcheon, J. Beinlich, Andreas Fallon, S. Dipple, G. Southam, G. Carbon mineralisation of ultramafic mine tailings can reduce net emissions of anthropogenic carbon dioxide by reacting Mg-silicate and hydroxide minerals with atmospheric CO2 to produce carbonate minerals. We investigate the controls on carbonate mineral formation at the derelict Woodsreef chrysotile mine (New South Wales, Australia). Quantitative XRD was used to understand how mineralogy changes with depth into the tailings pile, and shows that hydromagnesite [Mg5(CO3)4(OH)2·4H2O], is present in shallow tailings material (<40?cm), while coalingite [Mg10Fe3+2(CO3)(OH)24·2H2O] and pyroaurite [Mg6Fe3+2(CO3)(OH)16·4H2O] are forming deeper in the tailings material. This indicates that there may be two geochemical environments within the upper ~1?m of the tailings, with hydromagnesite forming within the shallow tailings via carbonation of brucite in CO2-rich conditions, and pyroaurite and coalingite forming under more carbon limited conditions at depth. Radiogenic isotope results indicate hydromagnesite and pyroaurite have a modern (F14C > 0.8) atmospheric CO2 source. Laboratory-based anion exchange experiments, conducted to explore stable C isotope fractionation in pyroaurite, shows that pyroaurite d13C values change with carbon availability, and 13C-depleted signatures are typical of hydrotalcites in C-limited environments, such as the deep tailings at Woodsreef. Quantitative XRD and elemental C data estimates that Woodsreef absorbs between of 229.0–405.1?g CO2?m-2 y-1. 2018 Journal Article http://hdl.handle.net/20.500.11937/71319 10.1016/j.ijggc.2018.09.015 Elsevier restricted |
| spellingShingle | Turvey, C. Wilson, S. Hamilton, J. Tait, A. McCutcheon, J. Beinlich, Andreas Fallon, S. Dipple, G. Southam, G. Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings |
| title | Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings |
| title_full | Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings |
| title_fullStr | Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings |
| title_full_unstemmed | Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings |
| title_short | Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings |
| title_sort | hydrotalcites and hydrated mg-carbonates as carbon sinks in serpentinite mineral wastes from the woodsreef chrysotile mine, new south wales, australia: controls on carbonate mineralogy and efficiency of co2 air capture in mine tailings |
| url | http://hdl.handle.net/20.500.11937/71319 |