Perovskite oxide and carbonate composite membrane for carbon dioxide transport
© 2018 Elsevier B.V. A novel La0.6Sr0.4Co0.2Fe0.8O3-d based ternary carbonate composite membrane was developed via melting impregnation. The enhanced carbon dioxide permeability is due to the existence of La0.6Sr0.4Co0.2Fe0.8O3-d, a mixed ionic-electronic conductor, and the carbonate phases. The com...
| Main Authors: | , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier BV
2019
|
| Online Access: | http://hdl.handle.net/20.500.11937/71299 |
| Summary: | © 2018 Elsevier B.V. A novel La0.6Sr0.4Co0.2Fe0.8O3-d based ternary carbonate composite membrane was developed via melting impregnation. The enhanced carbon dioxide permeability is due to the existence of La0.6Sr0.4Co0.2Fe0.8O3-d, a mixed ionic-electronic conductor, and the carbonate phases. The composite membrane greatly promotes the CO2 surface reaction rate to form CO32- and the subsequent ionic transport rate. To further understand the mechanism, the effect of O2 on carbon dioxide permeability was also analyzed under fuel gas conditions. |
|---|