Impact of nanoparticles on the CO2-brine interfacial tension at high pressure and temperature
Hypothesis: Nanofluid flooding has been identified as a promising method for enhanced oil recovery (EOR) and improved Carbon geo-sequestration (CGS). However, it is unclear how nanoparticles (NPs) influence the CO2-brine interfacial tension (γ), which is a key parameter in pore-to reservoirs-scale f...
| Main Authors: | , , , |
|---|---|
| Format: | Journal Article |
| Published: |
Academic Press
2018
|
| Online Access: | http://hdl.handle.net/20.500.11937/71142 |
| _version_ | 1848762400779534336 |
|---|---|
| author | Al-Anssari, S. Barifcani, Ahmed Keshavarz, A. Iglauer, Stefan |
| author_facet | Al-Anssari, S. Barifcani, Ahmed Keshavarz, A. Iglauer, Stefan |
| author_sort | Al-Anssari, S. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | Hypothesis: Nanofluid flooding has been identified as a promising method for enhanced oil recovery (EOR) and improved Carbon geo-sequestration (CGS). However, it is unclear how nanoparticles (NPs) influence the CO2-brine interfacial tension (γ), which is a key parameter in pore-to reservoirs-scale fluid dynamics, and consequently project success. The effects of pressure, temperature, salinity, and NPs concentration on CO2-silica (hydrophilic or hydrophobic) nanofluid γ was thus systematically investigated to understand the influence of nanofluid flooding on CO2 geo-storage. Experiments: Pendant drop method was used to measure CO2/nanofluid γ at carbon storage conditions using high pressure-high temperature optical cell. Findings: CO2/nanofluid γ was increased with temperature and decreased with increased pressure which is consistent with CO2/water γ. The hydrophilicity of NPs was the major factor; hydrophobic silica NPs significantly reduced γ at all investigated pressures and temperatures while hydrophilic NPs showed only minor influence on γ. Further, increased salinity which increased γ can also eliminate the influence of NPs on CO2/nanofluid γ. Hence, CO2/brine γ has low, but, reasonable values (higher than 20 mN/m) at carbon storage conditions even with the presence of hydrophilic NPs, therefore, CO2 storage can be considered in oil reservoirs after flooding with hydrophilic nanofluid.
The findings of this study provide new insights into nanofluids applications for enhanced oil recovery and carbon geosequestration projects. |
| first_indexed | 2025-11-14T10:46:58Z |
| format | Journal Article |
| id | curtin-20.500.11937-71142 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T10:46:58Z |
| publishDate | 2018 |
| publisher | Academic Press |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-711422020-09-18T05:00:46Z Impact of nanoparticles on the CO2-brine interfacial tension at high pressure and temperature Al-Anssari, S. Barifcani, Ahmed Keshavarz, A. Iglauer, Stefan Hypothesis: Nanofluid flooding has been identified as a promising method for enhanced oil recovery (EOR) and improved Carbon geo-sequestration (CGS). However, it is unclear how nanoparticles (NPs) influence the CO2-brine interfacial tension (γ), which is a key parameter in pore-to reservoirs-scale fluid dynamics, and consequently project success. The effects of pressure, temperature, salinity, and NPs concentration on CO2-silica (hydrophilic or hydrophobic) nanofluid γ was thus systematically investigated to understand the influence of nanofluid flooding on CO2 geo-storage. Experiments: Pendant drop method was used to measure CO2/nanofluid γ at carbon storage conditions using high pressure-high temperature optical cell. Findings: CO2/nanofluid γ was increased with temperature and decreased with increased pressure which is consistent with CO2/water γ. The hydrophilicity of NPs was the major factor; hydrophobic silica NPs significantly reduced γ at all investigated pressures and temperatures while hydrophilic NPs showed only minor influence on γ. Further, increased salinity which increased γ can also eliminate the influence of NPs on CO2/nanofluid γ. Hence, CO2/brine γ has low, but, reasonable values (higher than 20 mN/m) at carbon storage conditions even with the presence of hydrophilic NPs, therefore, CO2 storage can be considered in oil reservoirs after flooding with hydrophilic nanofluid. The findings of this study provide new insights into nanofluids applications for enhanced oil recovery and carbon geosequestration projects. 2018 Journal Article http://hdl.handle.net/20.500.11937/71142 10.1016/j.jcis.2018.07.115 http://creativecommons.org/licenses/by-nc-nd/4.0/ Academic Press fulltext |
| spellingShingle | Al-Anssari, S. Barifcani, Ahmed Keshavarz, A. Iglauer, Stefan Impact of nanoparticles on the CO2-brine interfacial tension at high pressure and temperature |
| title | Impact of nanoparticles on the CO2-brine interfacial tension at high pressure and
temperature |
| title_full | Impact of nanoparticles on the CO2-brine interfacial tension at high pressure and
temperature |
| title_fullStr | Impact of nanoparticles on the CO2-brine interfacial tension at high pressure and
temperature |
| title_full_unstemmed | Impact of nanoparticles on the CO2-brine interfacial tension at high pressure and
temperature |
| title_short | Impact of nanoparticles on the CO2-brine interfacial tension at high pressure and
temperature |
| title_sort | impact of nanoparticles on the co2-brine interfacial tension at high pressure and
temperature |
| url | http://hdl.handle.net/20.500.11937/71142 |