Intelligent computing for predicting axial capacity of drilled shafts

In the last few decades, numerous methods have been developed for predicting the axial capacity of drilled shafts. Among the available methods, the cone penetration test (CPT) based models have been shown to give better predictions in many situations. This can be attributed to the fact that CPT-base...

Full description

Bibliographic Details
Main Authors: Shahin, Mohamed, Jaksa, M.
Other Authors: Magued Iskander
Format: Conference Paper
Published: American Society of Civil Engineers (ASCE) 2009
Online Access:http://hdl.handle.net/20.500.11937/7090
Description
Summary:In the last few decades, numerous methods have been developed for predicting the axial capacity of drilled shafts. Among the available methods, the cone penetration test (CPT) based models have been shown to give better predictions in many situations. This can be attributed to the fact that CPT-based methods have been developed in accordance with the results of the CPT tests, which have been found to yield more reliable soil properties, hence, more accurate axial capacity predictions of drilled shafts. In this paper, one of the most commonly used artificial intelligence techniques, i.e. artificial neural networks (ANNs), was utilized in an attempt to obtain more accurate axial capacity predictions for drilled shafts. The ANN model was developed using data collected from the literature that comprise CPT results and drilled shaft load tests of 94 case records. The predictions from the ANN model were compared with those obtained from three commonly used available CPT-based methods. The results indicate that the ANN-based model provides more accurate axial capacity predictions of drilled shafts and outperforms the available conventional methods.