Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis
© The Royal Society of Chemistry. The design of artificial photosynthetic systems (APSs) with hierarchical porosity by taking into account liquid flow and gas transport effects is of high significance. Herein we demonstrate a general and facile strategy to prepare hierarchical 1D to 3D macro/meso/na...
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
R S C Publications
2017
|
| Online Access: | http://hdl.handle.net/20.500.11937/70759 |
| _version_ | 1848762293978923008 |
|---|---|
| author | Xu, J. Zhou, H. Shi, K. Yan, R. Tang, Y. Liu, Jian Ye, J. Zhang, D. Fan, T. |
| author_facet | Xu, J. Zhou, H. Shi, K. Yan, R. Tang, Y. Liu, Jian Ye, J. Zhang, D. Fan, T. |
| author_sort | Xu, J. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | © The Royal Society of Chemistry. The design of artificial photosynthetic systems (APSs) with hierarchical porosity by taking into account liquid flow and gas transport effects is of high significance. Herein we demonstrate a general and facile strategy to prepare hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable g-C3N4assemblies via bio-directed morphology engineering for enhanced artificial photosynthesis of CO and methane via CO2reduction. Escherichia coli (1D), Papilio nephelus wings (2D, planar) and cole pollen (3D) are adopted for 1D to 3D multiscale assemblies with high surface areas via a two-step transformation process. Moreover, liquid flow and gas diffusion behaviors are investigated using COMSOL computational simulation to reveal the relationship between structural effects and output efficiency theoretically. Such methodology can be extended to realize versatile fabrication of various morph-tunable carbon nitride assemblies. Importantly, this research illustrates the power of combining theoretical calculations and experimental techniques to achieve the controlled design of high efficiency APS and may provide further avenues to APS optimization. |
| first_indexed | 2025-11-14T10:45:16Z |
| format | Journal Article |
| id | curtin-20.500.11937-70759 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T10:45:16Z |
| publishDate | 2017 |
| publisher | R S C Publications |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-707592018-12-13T09:32:49Z Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis Xu, J. Zhou, H. Shi, K. Yan, R. Tang, Y. Liu, Jian Ye, J. Zhang, D. Fan, T. © The Royal Society of Chemistry. The design of artificial photosynthetic systems (APSs) with hierarchical porosity by taking into account liquid flow and gas transport effects is of high significance. Herein we demonstrate a general and facile strategy to prepare hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable g-C3N4assemblies via bio-directed morphology engineering for enhanced artificial photosynthesis of CO and methane via CO2reduction. Escherichia coli (1D), Papilio nephelus wings (2D, planar) and cole pollen (3D) are adopted for 1D to 3D multiscale assemblies with high surface areas via a two-step transformation process. Moreover, liquid flow and gas diffusion behaviors are investigated using COMSOL computational simulation to reveal the relationship between structural effects and output efficiency theoretically. Such methodology can be extended to realize versatile fabrication of various morph-tunable carbon nitride assemblies. Importantly, this research illustrates the power of combining theoretical calculations and experimental techniques to achieve the controlled design of high efficiency APS and may provide further avenues to APS optimization. 2017 Journal Article http://hdl.handle.net/20.500.11937/70759 10.1039/c6ta08691h R S C Publications restricted |
| spellingShingle | Xu, J. Zhou, H. Shi, K. Yan, R. Tang, Y. Liu, Jian Ye, J. Zhang, D. Fan, T. Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis |
| title | Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis |
| title_full | Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis |
| title_fullStr | Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis |
| title_full_unstemmed | Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis |
| title_short | Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis |
| title_sort | bio-directed morphology engineering towards hierarchical 1d to 3d macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis |
| url | http://hdl.handle.net/20.500.11937/70759 |