Defect-Enhanced Charge Separation and Transfer within Protection Layer/Semiconductor Structure of Photoanodes.

Silicon (Si) requires a protection layer to maintain stable and long-time photoanodic reaction. However, poor charge separation and transfer are key constraint factors in protection layer/Si photoanodes that reduce their water-splitting efficiency. Here, a simultaneous enhancement of charge separati...

Full description

Bibliographic Details
Main Authors: Zheng, Jianyun, Lyu, Y., Xie, C., Wang, R., Tao, L., Wu, H., Zhou, H., Jiang, San Ping, Wang, S.
Format: Journal Article
Published: Wiley - V C H Verlag GmbH & Co. KGaA 2018
Online Access:http://hdl.handle.net/20.500.11937/69737
Description
Summary:Silicon (Si) requires a protection layer to maintain stable and long-time photoanodic reaction. However, poor charge separation and transfer are key constraint factors in protection layer/Si photoanodes that reduce their water-splitting efficiency. Here, a simultaneous enhancement of charge separation and transfer in Nb-doped NiOx /Ni/black-Si photoanodes induced by plasma treatment is reported. The optimized photoanodes yield the highest charge-separation efficiency (?sep ) of ˜81% at 1.23 V versus reversible hydrogen electrode, corresponding to the photocurrent density of ˜29.1 mA cm-2 . On the basis of detailed characterizations, the concentration and species of oxygen defects in the NiOx -based layer are adjusted by synergistic effect of Nb doping and plasma treatment, which are the dominating factors for forming suitable band structure and providing a favorable hole-migration channel. This work elucidates the important role of oxygen defects on charge separation and transfer in the protection layer/Si-based photoelectrochemical systems and is encouraging for application of this synergistic strategy to other candidate photoanodes.