Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies

In a demanding commercial world, large-scale chemical processes have been widely utilised to satisfy consumer related needs. Chemical industries are key to promoting economic growth and meeting the requirements of a sustainable industrialised society. The market need for diverse commodities produced...

Full description

Bibliographic Details
Main Authors: Castilla, I., Woods, D., Reen, F., O'Gara, Fergal
Format: Journal Article
Published: M D P I AG 2018
Online Access:http://hdl.handle.net/20.500.11937/69649
_version_ 1848762096887529472
author Castilla, I.
Woods, D.
Reen, F.
O'Gara, Fergal
author_facet Castilla, I.
Woods, D.
Reen, F.
O'Gara, Fergal
author_sort Castilla, I.
building Curtin Institutional Repository
collection Online Access
description In a demanding commercial world, large-scale chemical processes have been widely utilised to satisfy consumer related needs. Chemical industries are key to promoting economic growth and meeting the requirements of a sustainable industrialised society. The market need for diverse commodities produced by the chemical industry is rapidly expanding globally. Accompanying this demand is an increased threat to the environment and to human health, due to waste produced by increased industrial production. This increased demand has underscored the necessity to increase reaction efficiencies, in order to reduce costs and increase profits. The discovery of novel biocatalysts is a key method aimed at combating these difficulties. Metagenomic technology, as a tool for uncovering novel biocatalysts, has great potential and applicability and has already delivered many successful achievements. In this review we discuss, recent developments and achievements in the field of biocatalysis. We highlight how green chemistry principles through the application of biocatalysis, can be successfully promoted and implemented in various industrial sectors. In addition, we demonstrate how two novel lipases/esterases were mined from the marine environment by metagenomic analysis. Collectively these improvements can result in increased efficiency, decreased energy consumption, reduced waste and cost savings for the chemical industry.
first_indexed 2025-11-14T10:42:08Z
format Journal Article
id curtin-20.500.11937-69649
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T10:42:08Z
publishDate 2018
publisher M D P I AG
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-696492018-08-22T04:29:01Z Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies Castilla, I. Woods, D. Reen, F. O'Gara, Fergal In a demanding commercial world, large-scale chemical processes have been widely utilised to satisfy consumer related needs. Chemical industries are key to promoting economic growth and meeting the requirements of a sustainable industrialised society. The market need for diverse commodities produced by the chemical industry is rapidly expanding globally. Accompanying this demand is an increased threat to the environment and to human health, due to waste produced by increased industrial production. This increased demand has underscored the necessity to increase reaction efficiencies, in order to reduce costs and increase profits. The discovery of novel biocatalysts is a key method aimed at combating these difficulties. Metagenomic technology, as a tool for uncovering novel biocatalysts, has great potential and applicability and has already delivered many successful achievements. In this review we discuss, recent developments and achievements in the field of biocatalysis. We highlight how green chemistry principles through the application of biocatalysis, can be successfully promoted and implemented in various industrial sectors. In addition, we demonstrate how two novel lipases/esterases were mined from the marine environment by metagenomic analysis. Collectively these improvements can result in increased efficiency, decreased energy consumption, reduced waste and cost savings for the chemical industry. 2018 Journal Article http://hdl.handle.net/20.500.11937/69649 10.3390/md16070227 http://creativecommons.org/licenses/by/4.0/ M D P I AG fulltext
spellingShingle Castilla, I.
Woods, D.
Reen, F.
O'Gara, Fergal
Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies
title Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies
title_full Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies
title_fullStr Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies
title_full_unstemmed Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies
title_short Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies
title_sort harnessing marine biocatalytic reservoirs for green chemistry applications through metagenomic technologies
url http://hdl.handle.net/20.500.11937/69649