Complex hydrides as thermal energy storage materials: Characterisation and thermal decomposition of Na2Mg2NiH6
© 2018 The Royal Society of Chemistry. Complex transition metal hydrides have been identified as being materials for multi-functional applications holding potential as thermal energy storage materials, hydrogen storage materials and optical sensors. Na2Mg2NiH6(2Na+·2Mg2+·2H-·[NiH4]4-) is one such ma...
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
R S C Publications
2018
|
| Online Access: | http://purl.org/au-research/grants/arc/FT160100303 http://hdl.handle.net/20.500.11937/69053 |
| Summary: | © 2018 The Royal Society of Chemistry. Complex transition metal hydrides have been identified as being materials for multi-functional applications holding potential as thermal energy storage materials, hydrogen storage materials and optical sensors. Na2Mg2NiH6(2Na+·2Mg2+·2H-·[NiH4]4-) is one such material. In this study, the decomposition pathway and thermodynamics have been explored for the first time, revealing that at 225 °C, hydrogen desorption commences with two major decomposition steps, with maximum H2desorption rates at 278 and 350 °C as measured by differential scanning calorimetry. The first step of decomposition results in the formation of Mg2NiHx(x < 0.3) and NaH, before these compounds decompose into Mg2Ni and Na, respectively. PCI analysis of Na2Mg2NiH6has determined the thermodynamics of decomposition for the first step to have a ?Hdesand ?Sdesof 83 kJ mol-1H2and 140 J K-1mol-1H2, respectively. Hydrogen cycling of the first step has been achieved for 10 cycles without any significant reduction in hydrogen capacity, with complete hydrogen desorption within 20 min at 395 °C. Despite the relatively high cost of Ni, the ability to effectively store hydrogen reversibly at operational temperatures of 318-568 °C should allow this material to be considered as a thermal energy storage material. |
|---|