The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity
© 2018, The Author(s). In this paper, we focus on the convergence analysis and error estimation for the unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity. By introducing a double iterative technique, in the case of the nonlinearity with singulari...
| Main Authors: | , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
SpringerOpen
2018
|
| Online Access: | http://hdl.handle.net/20.500.11937/69031 |
| Summary: | © 2018, The Author(s). In this paper, we focus on the convergence analysis and error estimation for the unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity. By introducing a double iterative technique, in the case of the nonlinearity with singularity at time and space variables, the unique positive solution to the problem is established. Then, from the developed iterative technique, the sequences converging uniformly to the unique solution are formulated, and the estimates of the error and the convergence rate are derived. |
|---|