Volatile-char interactions: Roles of in situ volatiles with distinctly-different chemistry in determining char structure and reactivity
© 2018 The Combustion Institute. This study reports the roles of volatiles with distinctly-different chemistry in determining char reactivity and char structure during in situ volatile-char interactions under non-catalytic conditions. Volatiles were generated in situ from polyethylene (PE), double-a...
| Main Authors: | , |
|---|---|
| Format: | Journal Article |
| Published: |
Combustion Institute
2018
|
| Online Access: | http://hdl.handle.net/20.500.11937/68665 |
| _version_ | 1848761860042522624 |
|---|---|
| author | Chen, X. Wu, Hongwei |
| author_facet | Chen, X. Wu, Hongwei |
| author_sort | Chen, X. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | © 2018 The Combustion Institute. This study reports the roles of volatiles with distinctly-different chemistry in determining char reactivity and char structure during in situ volatile-char interactions under non-catalytic conditions. Volatiles were generated in situ from polyethylene (PE), double-acid washed biosolid (DAWB), polyethylene glycol (PEG) or cellulose and interacted with char prepared from DAWB that is free of catalytically-active inorganic species in a two-stage reactor at 1000 °C. The experimental results show that both H- and O-containing reactive species play different roles during in situ volatile-char interactions. It has been found that char reactivity decreases substantially after in situ volatile-char interactions. Results from Raman analysis of the char after in situ interactions with the PE volatiles show H-containing reactive species substantially enhance the condensation of the aromatic ring systems within the char, thus slightly decreasing the H content in char and also making char carbon structure considerably less reactive. It has also been found that the reactivity of char after in situ volatile-char interactions increases with increasing O/H molar ratio of volatiles. The results indicate that O-containing reactive species in volatiles can react with char to form C. O complex oxides that mitigate the carbon structure from condensing into large aromatic ring systems, thus increasing O and H contents in char and enhancing char reactivity. |
| first_indexed | 2025-11-14T10:38:23Z |
| format | Journal Article |
| id | curtin-20.500.11937-68665 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T10:38:23Z |
| publishDate | 2018 |
| publisher | Combustion Institute |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-686652018-06-29T12:35:14Z Volatile-char interactions: Roles of in situ volatiles with distinctly-different chemistry in determining char structure and reactivity Chen, X. Wu, Hongwei © 2018 The Combustion Institute. This study reports the roles of volatiles with distinctly-different chemistry in determining char reactivity and char structure during in situ volatile-char interactions under non-catalytic conditions. Volatiles were generated in situ from polyethylene (PE), double-acid washed biosolid (DAWB), polyethylene glycol (PEG) or cellulose and interacted with char prepared from DAWB that is free of catalytically-active inorganic species in a two-stage reactor at 1000 °C. The experimental results show that both H- and O-containing reactive species play different roles during in situ volatile-char interactions. It has been found that char reactivity decreases substantially after in situ volatile-char interactions. Results from Raman analysis of the char after in situ interactions with the PE volatiles show H-containing reactive species substantially enhance the condensation of the aromatic ring systems within the char, thus slightly decreasing the H content in char and also making char carbon structure considerably less reactive. It has also been found that the reactivity of char after in situ volatile-char interactions increases with increasing O/H molar ratio of volatiles. The results indicate that O-containing reactive species in volatiles can react with char to form C. O complex oxides that mitigate the carbon structure from condensing into large aromatic ring systems, thus increasing O and H contents in char and enhancing char reactivity. 2018 Journal Article http://hdl.handle.net/20.500.11937/68665 10.1016/j.proci.2018.05.019 Combustion Institute restricted |
| spellingShingle | Chen, X. Wu, Hongwei Volatile-char interactions: Roles of in situ volatiles with distinctly-different chemistry in determining char structure and reactivity |
| title | Volatile-char interactions: Roles of in situ volatiles with distinctly-different chemistry in determining char structure and reactivity |
| title_full | Volatile-char interactions: Roles of in situ volatiles with distinctly-different chemistry in determining char structure and reactivity |
| title_fullStr | Volatile-char interactions: Roles of in situ volatiles with distinctly-different chemistry in determining char structure and reactivity |
| title_full_unstemmed | Volatile-char interactions: Roles of in situ volatiles with distinctly-different chemistry in determining char structure and reactivity |
| title_short | Volatile-char interactions: Roles of in situ volatiles with distinctly-different chemistry in determining char structure and reactivity |
| title_sort | volatile-char interactions: roles of in situ volatiles with distinctly-different chemistry in determining char structure and reactivity |
| url | http://hdl.handle.net/20.500.11937/68665 |